Как эффективно анализировать файлы с фиксированной шириной?
Я пытаюсь найти эффективный способ разбора файлов, содержащих строки фиксированной ширины. Например, первые 20 символов представляют собой столбец, начиная с 21:30 и т.д.
Предполагая, что строка содержит 100 символов, что было бы эффективным способом разбора строки на несколько компонентов?
Я мог бы использовать нарезку строк в строке, но это немного уродливо, если линия большая. Есть ли другие быстрые методы?
Ответы
Ответ 1
Использовать struct
модуль стандартной библиотеки Python было бы довольно просто, а также очень быстро, так как он написан на C.
Вот как это можно сделать, чтобы делать то, что вы хотите. Это также позволяет пропустить столбцы символов, указав отрицательные значения для количества символов в поле.
import struct
fieldwidths = (2, -10, 24) # negative widths represent ignored padding fields
fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's')
for fw in fieldwidths)
fieldstruct = struct.Struct(fmtstring)
parse = fieldstruct.unpack_from
print('fmtstring: {!r}, recsize: {} chars'.format(fmtstring, fieldstruct.size))
line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fields = parse(line)
print('fields: {}'.format(fields))
Выход:
fmtstring: '2s 10x 24s', recsize: 36 chars
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
Следующие модификации адаптируют его работу в Python 2 или 3 (и обрабатывают ввод Unicode):
import sys
fieldstruct = struct.Struct(fmtstring)
if sys.version_info[0] < 3:
parse = fieldstruct.unpack_from
else:
# converts unicode input to byte string and results back to unicode string
unpack = fieldstruct.unpack_from
parse = lambda line: tuple(s.decode() for s in unpack(line.encode()))
Вот способ сделать это с помощью срезов строк, как вы думали, но были обеспокоены тем, что это может стать слишком уродливым. Хорошая вещь в этом заключается, помимо того, что он не такой уж и уродливый, в том, что он работает без изменений в Python 2 и 3, а также в способности обрабатывать строки Unicode. Я не тестировал его, но подозреваю, что он может конкурировать с версией модуля struct
по скорости. Это можно было бы немного ускорить, убрав возможность иметь поля заполнения.
try:
from itertools import izip_longest # added in Py 2.6
except ImportError:
from itertools import zip_longest as izip_longest # name change in Py 3.x
try:
from itertools import accumulate # added in Py 3.2
except ImportError:
def accumulate(iterable):
'Return running totals (simplified version).'
total = next(iterable)
yield total
for value in iterable:
total += value
yield total
def make_parser(fieldwidths):
cuts = tuple(cut for cut in accumulate(abs(fw) for fw in fieldwidths))
pads = tuple(fw < 0 for fw in fieldwidths) # bool values for padding fields
flds = tuple(izip_longest(pads, (0,)+cuts, cuts))[:-1] # ignore final one
parse = lambda line: tuple(line[i:j] for pad, i, j in flds if not pad)
# optional informational function attributes
parse.size = sum(abs(fw) for fw in fieldwidths)
parse.fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's')
for fw in fieldwidths)
return parse
line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fieldwidths = (2, -10, 24) # negative widths represent ignored padding fields
parse = make_parser(fieldwidths)
fields = parse(line)
print('format: {!r}, rec size: {} chars'.format(parse.fmtstring, parse.size))
print('fields: {}'.format(fields))
Выход:
format: '2s 10x 24s', rec size: 36 chars
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
Ответ 2
Я не уверен, эффективен ли он, но он должен быть читабельным (в отличие от ручного среза). Я определил функцию slices
, которая получает длину строки и столбца и возвращает подстроки. Я сделал его генератором, поэтому для действительно длинных строк он не создает временный список подстрок.
def slices(s, *args):
position = 0
for length in args:
yield s[position:position + length]
position += length
Пример
In [32]: list(slices('abcdefghijklmnopqrstuvwxyz0123456789', 2))
Out[32]: ['ab']
In [33]: list(slices('abcdefghijklmnopqrstuvwxyz0123456789', 2, 10, 50))
Out[33]: ['ab', 'cdefghijkl', 'mnopqrstuvwxyz0123456789']
In [51]: d,c,h = slices('dogcathouse', 3, 3, 5)
In [52]: d,c,h
Out[52]: ('dog', 'cat', 'house')
Но я думаю, что преимущество генератора теряется, если вам нужны все столбцы сразу. Где можно извлечь выгоду, когда вы хотите обрабатывать столбцы один за другим, скажем в цикле.
Ответ 3
Еще два варианта, которые проще и красивее, чем уже упомянутые решения:
Первый использует панды:
import pandas as pd
path = 'filename.txt'
# Using Pandas with a column specification
col_specification = [(0, 20), (21, 30), (31, 50), (51, 100)]
data = pd.read_fwf(path, colspecs=col_specification)
И второй вариант с использованием numpy.loadtxt:
import numpy as np
# Using NumPy and letting it figure it out automagically
data_also = np.loadtxt(path)
Это зависит от того, каким образом вы хотите использовать свои данные.
Ответ 4
В приведенном ниже коде дается эскиз того, что вы можете сделать, если у вас есть серьезная обработка файлов с фиксированной шириной столбца.
"Серьезный" = несколько типов записей в каждом из нескольких типов файлов, записи до 1000 байтов, определитель макета и "противоположный" производитель/потребитель - это правительственный отдел с отношением, изменения компоновки приводят к неиспользуемым столбцам, вплоть до миллион записей в файле,...
Особенности: Прекомпиляция структурных форматов. Игнорирует нежелательные столбцы. Преобразует входные строки в требуемые типы данных (эскиз пропускает обработку ошибок). Преобразует записи в экземпляры объектов (или диктовки или названные кортежи, если вы предпочитаете).
код:
import struct, datetime, io, pprint
# functions for converting input fields to usable data
cnv_text = rstrip
cnv_int = int
cnv_date_dmy = lambda s: datetime.datetime.strptime(s, "%d%m%Y") # ddmmyyyy
# etc
# field specs (field name, start pos (1-relative), len, converter func)
fieldspecs = [
('surname', 11, 20, cnv_text),
('given_names', 31, 20, cnv_text),
('birth_date', 51, 8, cnv_date_dmy),
('start_date', 71, 8, cnv_date_dmy),
]
fieldspecs.sort(key=lambda x: x[1]) # just in case
# build the format for struct.unpack
unpack_len = 0
unpack_fmt = ""
for fieldspec in fieldspecs:
start = fieldspec[1] - 1
end = start + fieldspec[2]
if start > unpack_len:
unpack_fmt += str(start - unpack_len) + "x"
unpack_fmt += str(end - start) + "s"
unpack_len = end
field_indices = range(len(fieldspecs))
print unpack_len, unpack_fmt
unpacker = struct.Struct(unpack_fmt).unpack_from
class Record(object):
pass
# or use named tuples
raw_data = """\
....v....1....v....2....v....3....v....4....v....5....v....6....v....7....v....8
Featherstonehaugh Algernon Marmaduke 31121969 01012005XX
"""
f = cStringIO.StringIO(raw_data)
headings = f.next()
for line in f:
# The guts of this loop would of course be hidden away in a function/method
# and could be made less ugly
raw_fields = unpacker(line)
r = Record()
for x in field_indices:
setattr(r, fieldspecs[x][0], fieldspecs[x][3](raw_fields[x]))
pprint.pprint(r.__dict__)
print "Customer name:", r.given_names, r.surname
Вывод:
78 10x20s20s8s12x8s
{'birth_date': datetime.datetime(1969, 12, 31, 0, 0),
'given_names': 'Algernon Marmaduke',
'start_date': datetime.datetime(2005, 1, 1, 0, 0),
'surname': 'Featherstonehaugh'}
Customer name: Algernon Marmaduke Featherstonehaugh
Ответ 5
> str = '1234567890'
> w = [0,2,5,7,10]
> [ str[ w[i-1] : w[i] ] for i in range(1,len(w)) ]
['12', '345', '67', '890']
Ответ 6
Вот что NumPy использует под капотом (очень сильно упрощено, но все же - этот код находится в LineSplitter class
внутри _iotools module
):
import numpy as np
DELIMITER = (20, 10, 10, 20, 10, 10, 20)
idx = np.cumsum([0] + list(DELIMITER))
slices = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])]
def parse(line):
return [line[s] for s in slices]
Он не обрабатывает отрицательные разделители для игнорирования столбца, поэтому он не такой универсальный, как struct
, но он быстрее.
Ответ 7
Здесь простой модуль для Python 3, основанный на ответе Джона Мачина - при необходимости адаптируется:)
"""
fixedwidth
Parse and iterate through a fixedwidth text file, returning record objects.
Adapted from /questions/91160/how-to-efficiently-parse-fixed-width-files/589696#589696
USAGE
import fixedwidth, pprint
# define the fixed width fields we want
# fieldspecs is a list of [name, description, start, width, type] arrays.
fieldspecs = [
["FILEID", "File Identification", 1, 6, "A/N"],
["STUSAB", "State/U.S. Abbreviation (USPS)", 7, 2, "A"],
["SUMLEV", "Summary Level", 9, 3, "A/N"],
["LOGRECNO", "Logical Record Number", 19, 7, "N"],
["POP100", "Population Count (100%)", 30, 9, "N"],
]
# define the fieldtype conversion functions
fieldtype_fns = {
'A': str.rstrip,
'A/N': str.rstrip,
'N': int,
}
# iterate over record objects in the file
with open(f, 'rb'):
for record in fixedwidth.reader(f, fieldspecs, fieldtype_fns):
pprint.pprint(record.__dict__)
# output:
{'FILEID': 'SF1ST', 'LOGRECNO': 2, 'POP100': 1, 'STUSAB': 'TX', 'SUMLEV': '040'}
{'FILEID': 'SF1ST', 'LOGRECNO': 3, 'POP100': 2, 'STUSAB': 'TX', 'SUMLEV': '040'}
...
"""
import struct, io
# fieldspec columns
iName, iDescription, iStart, iWidth, iType = range(5)
def get_struct_unpacker(fieldspecs):
"""
Build the format string for struct.unpack to use, based on the fieldspecs.
fieldspecs is a list of [name, description, start, width, type] arrays.
Returns a string like "6s2s3s7x7s4x9s".
"""
unpack_len = 0
unpack_fmt = ""
for fieldspec in fieldspecs:
start = fieldspec[iStart] - 1
end = start + fieldspec[iWidth]
if start > unpack_len:
unpack_fmt += str(start - unpack_len) + "x"
unpack_fmt += str(end - start) + "s"
unpack_len = end
struct_unpacker = struct.Struct(unpack_fmt).unpack_from
return struct_unpacker
class Record(object):
pass
# or use named tuples
def reader(f, fieldspecs, fieldtype_fns):
"""
Wrap a fixedwidth file and return records according to the given fieldspecs.
fieldspecs is a list of [name, description, start, width, type] arrays.
fieldtype_fns is a dictionary of functions used to transform the raw string values,
one for each type.
"""
# make sure fieldspecs are sorted properly
fieldspecs.sort(key=lambda fieldspec: fieldspec[iStart])
struct_unpacker = get_struct_unpacker(fieldspecs)
field_indices = range(len(fieldspecs))
for line in f:
raw_fields = struct_unpacker(line) # split line into field values
record = Record()
for i in field_indices:
fieldspec = fieldspecs[i]
fieldname = fieldspec[iName]
s = raw_fields[i].decode() # convert raw bytes to a string
fn = fieldtype_fns[fieldspec[iType]] # get conversion function
value = fn(s) # convert string to value (eg to an int)
setattr(record, fieldname, value)
yield record
if __name__=='__main__':
# test module
import pprint, io
# define the fields we want
# fieldspecs are [name, description, start, width, type]
fieldspecs = [
["FILEID", "File Identification", 1, 6, "A/N"],
["STUSAB", "State/U.S. Abbreviation (USPS)", 7, 2, "A"],
["SUMLEV", "Summary Level", 9, 3, "A/N"],
["LOGRECNO", "Logical Record Number", 19, 7, "N"],
["POP100", "Population Count (100%)", 30, 9, "N"],
]
# define a conversion function for integers
def to_int(s):
"""
Convert a numeric string to an integer.
Allows a leading ! as an indicator of missing or uncertain data.
Returns None if no data.
"""
try:
return int(s)
except:
try:
return int(s[1:]) # ignore a leading !
except:
return None # assume has a leading ! and no value
# define the conversion fns
fieldtype_fns = {
'A': str.rstrip,
'A/N': str.rstrip,
'N': to_int,
# 'N': int,
# 'D': lambda s: datetime.datetime.strptime(s, "%d%m%Y"), # ddmmyyyy
# etc
}
# define a fixedwidth sample
sample = """\
SF1ST TX04089000 00000023748 1
SF1ST TX04090000 00000033748! 2
SF1ST TX04091000 00000043748!
"""
sample_data = sample.encode() # convert string to bytes
file_like = io.BytesIO(sample_data) # create a file-like wrapper around bytes
# iterate over record objects in the file
for record in reader(file_like, fieldspecs, fieldtype_fns):
# print(record)
pprint.pprint(record.__dict__)
Ответ 8
Нарезка строк не должна быть уродливой, пока вы держите ее организованной. Подумайте о сохранении ширины поля в словаре, а затем используя связанные имена для создания объекта:
from collections import OrderedDict
class Entry:
def __init__(self, line):
name2width = OrderedDict()
name2width['foo'] = 2
name2width['bar'] = 3
name2width['baz'] = 2
pos = 0
for name, width in name2width.items():
val = line[pos : pos + width]
if len(val) != width:
raise ValueError("not enough characters: \'{}\'".format(line))
setattr(self, name, val)
pos += width
file = "ab789yz\ncd987wx\nef555uv"
entry = []
for line in file.split('\n'):
entry.append(Entry(line))
print(entry[1].bar) # output: 987
Ответ 9
Поскольку моя старая работа часто обрабатывает 1 миллион строк данных с фиксированной пропускной способностью, я исследовал эту проблему, когда начал использовать Python.
Есть 2 типа фиксированной ширины
- ASCII FixedWidth (длина символа ascii = 1, длина двухбайтового кодированного символа = 2)
- Unicode FixedWidth (длина символа ascii и длина двухбайтового кодированного символа = 1)
Если строка ресурса состоит из символов ascii, то ASCII FixedWidth = Unicode FixedWidth
К счастью, строка и байт различаются в py3, что уменьшает путаницу при работе с двухбайтовыми символами (eggbk, big5, euc-jp, shift-jis и т.д.).
Для обработки "ASCII FixedWidth" строка обычно конвертируется в байты, а затем разделяется.
Без импорта сторонних модулей
totalLineCount = 1 миллион, lineLength = 800 байт, FixedWidthArgs = (10,25,4,....), я разделил строку примерно на 5 способов и получаю следующий вывод:
- структура самая быстрая (1x)
- Только цикл, а не предварительная обработка. FixedWidthArgs - самый медленный (5x+)
-
slice(bytes)
быстрее, чем slice(string)
- Исходная строка - это результат теста байтов: struct (1x), operator.itemgetter(1.7x), предварительно скомпилированный sliceObject и списки (2.8x), re.patten object (2.9x)
При работе с большими файлами мы часто используем with open ( file, "rb") as f:
Метод пересекает один из вышеуказанных файлов, около 2,4 секунды.
Я думаю, что соответствующий обработчик, который обрабатывает 1 миллион строк данных, разбивает каждую строку на 20 полей и занимает менее 2,4 секунды.
Я считаю только, что stuct
и itemgetter
соответствуют требованиям
ps: для нормального отображения я преобразовал юникод str в байты. Если вы находитесь в двухбайтовой среде, вам не нужно это делать.
from itertools import accumulate
from operator import itemgetter
def oprt_parser(sArgs):
sum_arg = tuple(accumulate(abs(i) for i in sArgs))
# Negative parameter field index
cuts = tuple(i for i,num in enumerate(sArgs) if num < 0)
# Get slice args and Ignore fields of negative length
ig_Args = tuple(item for i, item in enumerate(zip((0,)+sum_arg,sum_arg)) if i not in cuts)
# Generate 'operator.itemgetter' object
oprtObj =itemgetter(*[slice(s,e) for s,e in ig_Args])
return oprtObj
lineb = b'abcdefghijklmnopqrstuvwxyz\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4\xb6\xee\xb7\xa2\xb8\xf6\xba\xcd0123456789'
line = lineb.decode("GBK")
# Unicode Fixed Width
fieldwidthsU = (13, -13, 4, -4, 5,-5) # Negative width fields is ignored
# ASCII Fixed Width
fieldwidths = (13, -13, 8, -8, 5,-5) # Negative width fields is ignored
# Unicode FixedWidth processing
parse = oprt_parser(fieldwidthsU)
fields = parse(line)
print('Unicode FixedWidth','fields: {}'.format(tuple(map(lambda s: s.encode("GBK"), fields))))
# ASCII FixedWidth processing
parse = oprt_parser(fieldwidths)
fields = parse(lineb)
print('ASCII FixedWidth','fields: {}'.format(fields))
line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fieldwidths = (2, -10, 24)
parse = oprt_parser(fieldwidths)
fields = parse(line)
print(f"fields: {fields}")
Выход:
Unicode FixedWidth fields: (b'abcdefghijklm', b'\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4', b'01234')
ASCII FixedWidth fields: (b'abcdefghijklm', b'\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4', b'01234')
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
oprt_parser
- 4x make_parser
(список представлений + фрагмент)
В ходе исследования было установлено, что, когда скорость процессора выше, кажется, что эффективность метода re
увеличивается быстрее.
Поскольку у меня нет большего и лучшего компьютера для тестирования, предоставьте мой тестовый код, если кому-то интересно, вы можете протестировать его на более быстром компьютере.
Запустить среду:
- ОС: win10
- питон: 3.7.2
- Процессор: AMD Athlon X3 450
- HD: Seagate 1T
import timeit
import time
import re
from itertools import accumulate
from operator import itemgetter
def eff2(stmt,onlyNum= False,showResult=False):
'''test function'''
if onlyNum:
rl = timeit.repeat(stmt=stmt,repeat=roundI,number=timesI,globals=globals())
avg = sum(rl) / len(rl)
return f"{avg * (10 ** 6)/timesI:0.4f}"
else:
rl = timeit.repeat(stmt=stmt,repeat=10,number=1000,globals=globals())
avg = sum(rl) / len(rl)
print(f"【{stmt}】")
print(f"\tquick avg = {avg * (10 ** 6)/1000:0.4f} s/million")
if showResult:
print(f"\t Result = {eval(stmt)}\n\t timelist = {rl}\n")
else:
print("")
def upDouble(argList,argRate):
return [c*argRate for c in argList]
tbStr = "000000001111000002222真2233333333000000004444444QAZ55555555000000006666666ABC这些事中文字abcdefghijk"
tbBytes = tbStr.encode("GBK")
a20 = (4,4,2,2,2,3,2,2, 2 ,2,8,8,7,3,8,8,7,3, 12 ,11)
a20U = (4,4,2,2,2,3,2,2, 1 ,2,8,8,7,3,8,8,7,3, 6 ,11)
Slng = 800
rateS = Slng // 100
tStr = "".join(upDouble(tbStr , rateS))
tBytes = tStr.encode("GBK")
spltArgs = upDouble( a20 , rateS)
spltArgsU = upDouble( a20U , rateS)
testList = []
timesI = 100000
roundI = 5
print(f"test round = {roundI} timesI = {timesI} sourceLng = {len(tStr)} argFieldCount = {len(spltArgs)}")
print(f"pure str \n{''.ljust(60,'-')}")
# ==========================================
def str_parser(sArgs):
def prsr(oStr):
r = []
r_ap = r.append
stt=0
for lng in sArgs:
end = stt + lng
r_ap(oStr[stt:end])
stt = end
return tuple(r)
return prsr
Str_P = str_parser(spltArgsU)
# eff2("Str_P(tStr)")
testList.append("Str_P(tStr)")
print(f"pure bytes \n{''.ljust(60,'-')}")
# ==========================================
def byte_parser(sArgs):
def prsr(oBytes):
r, stt = [], 0
r_ap = r.append
for lng in sArgs:
end = stt + lng
r_ap(oBytes[stt:end])
stt = end
return r
return prsr
Byte_P = byte_parser(spltArgs)
# eff2("Byte_P(tBytes)")
testList.append("Byte_P(tBytes)")
# re,bytes
print(f"re compile object \n{''.ljust(60,'-')}")
# ==========================================
def rebc_parser(sArgs,otype="b"):
re_Args = "".join([f"(.{{{n}}})" for n in sArgs])
if otype == "b":
rebc_Args = re.compile(re_Args.encode("GBK"))
else:
rebc_Args = re.compile(re_Args)
def prsr(oBS):
return rebc_Args.match(oBS).groups()
return prsr
Rebc_P = rebc_parser(spltArgs)
# eff2("Rebc_P(tBytes)")
testList.append("Rebc_P(tBytes)")
Rebc_Ps = rebc_parser(spltArgsU,"s")
# eff2("Rebc_Ps(tStr)")
testList.append("Rebc_Ps(tStr)")
print(f"struct \n{''.ljust(60,'-')}")
# ==========================================
import struct
def struct_parser(sArgs):
struct_Args = " ".join(map(lambda x: str(x) + "s", sArgs))
def prsr(oBytes):
return struct.unpack(struct_Args, oBytes)
return prsr
Struct_P = struct_parser(spltArgs)
# eff2("Struct_P(tBytes)")
testList.append("Struct_P(tBytes)")
print(f"List Comprehensions + slice \n{''.ljust(60,'-')}")
# ==========================================
import itertools
def slice_parser(sArgs):
tl = tuple(itertools.accumulate(sArgs))
slice_Args = tuple(zip((0,)+tl,tl))
def prsr(oBytes):
return [oBytes[s:e] for s, e in slice_Args]
return prsr
Slice_P = slice_parser(spltArgs)
# eff2("Slice_P(tBytes)")
testList.append("Slice_P(tBytes)")
def sliceObj_parser(sArgs):
tl = tuple(itertools.accumulate(sArgs))
tl2 = tuple(zip((0,)+tl,tl))
sliceObj_Args = tuple(slice(s,e) for s,e in tl2)
def prsr(oBytes):
return [oBytes[so] for so in sliceObj_Args]
return prsr
SliceObj_P = sliceObj_parser(spltArgs)
# eff2("SliceObj_P(tBytes)")
testList.append("SliceObj_P(tBytes)")
SliceObj_Ps = sliceObj_parser(spltArgsU)
# eff2("SliceObj_Ps(tStr)")
testList.append("SliceObj_Ps(tStr)")
print(f"operator.itemgetter + slice object \n{''.ljust(60,'-')}")
# ==========================================
def oprt_parser(sArgs):
sum_arg = tuple(accumulate(abs(i) for i in sArgs))
cuts = tuple(i for i,num in enumerate(sArgs) if num < 0)
ig_Args = tuple(item for i,item in enumerate(zip((0,)+sum_arg,sum_arg)) if i not in cuts)
oprtObj =itemgetter(*[slice(s,e) for s,e in ig_Args])
return oprtObj
Oprt_P = oprt_parser(spltArgs)
# eff2("Oprt_P(tBytes)")
testList.append("Oprt_P(tBytes)")
Oprt_Ps = oprt_parser(spltArgsU)
# eff2("Oprt_Ps(tStr)")
testList.append("Oprt_Ps(tStr)")
print("|".join([s.split("(")[0].center(11," ") for s in testList]))
print("|".join(["".center(11,"-") for s in testList]))
print("|".join([eff2(s,True).rjust(11," ") for s in testList]))
Выход:
Test round = 5 timesI = 100000 sourceLng = 744 argFieldCount = 20
...
...
Str_P | Byte_P | Rebc_P | Rebc_Ps | Struct_P | Slice_P | SliceObj_P|SliceObj_Ps| Oprt_P | Oprt_Ps
-----------|-----------|-----------|-----------|-- ---------|-----------|-----------|-----------|---- -------|-----------
9.6315| 7.5952| 4.4187| 5.6867| 1.5123| 5.2915| 4.2673| 5.7121| 2.4713| 3.9051
Ответ 10
Вот как я решил с помощью словаря, который содержит, где поля начинаются и заканчиваются. Задание начальной и конечной точек помогло мне также управлять изменениями на протяжении всей колонки.
# fixed length
# '---------- ------- ----------- -----------'
line = '20.06.2019 myname active mydevice '
SLICES = {'date_start': 0,
'date_end': 10,
'name_start': 11,
'name_end': 18,
'status_start': 19,
'status_end': 30,
'device_start': 31,
'device_end': 42}
def get_values_as_dict(line, SLICES):
values = {}
key_list = {key.split("_")[0] for key in SLICES.keys()}
for key in key_list:
values[key] = line[SLICES[key+"_start"]:SLICES[key+"_end"]].strip()
return values
>>> print (get_values_as_dict(line,SLICES))
{'status': 'active', 'name': 'myname', 'date': '20.06.2019', 'device': 'mydevice'}