Возвращение CATransform3D для отображения четырехугольника в четырехугольник
Я пытаюсь получить CATransform3D, который будет отображать квадрат с четырьмя угловыми точками на другой квад с четырьмя новыми угловыми точками. Я потратил немного времени на изучение этого, и кажется, что шаги включают преобразование исходного Квадрата в Квадрат, а затем преобразование этого Квадрата в новый Квад. Мои методы выглядят так (код, заимствованный из здесь):
- (CATransform3D)quadFromSquare_x0:(float)x0 y0:(float)y0 x1:(float)x1 y1:(float)y1 x2:(float)x2 y2:(float)y2 x3:(float)x3 y3:(float)y3 {
float dx1 = x1 - x2, dy1 = y1 - y2;
float dx2 = x3 - x2, dy2 = y3 - y2;
float sx = x0 - x1 + x2 - x3;
float sy = y0 - y1 + y2 - y3;
float g = (sx * dy2 - dx2 * sy) / (dx1 * dy2 - dx2 * dy1);
float h = (dx1 * sy - sx * dy1) / (dx1 * dy2 - dx2 * dy1);
float a = x1 - x0 + g * x1;
float b = x3 - x0 + h * x3;
float c = x0;
float d = y1 - y0 + g * y1;
float e = y3 - y0 + h * y3;
float f = y0;
CATransform3D mat;
mat.m11 = a;
mat.m12 = b;
mat.m13 = 0;
mat.m14 = c;
mat.m21 = d;
mat.m22 = e;
mat.m23 = 0;
mat.m24 = f;
mat.m31 = 0;
mat.m32 = 0;
mat.m33 = 1;
mat.m34 = 0;
mat.m41 = g;
mat.m42 = h;
mat.m43 = 0;
mat.m44 = 1;
return mat;
}
- (CATransform3D)squareFromQuad_x0:(float)x0 y0:(float)y0 x1:(float)x1 y1:(float)y1 x2:(float)x2 y2:(float)y2 x3:(float)x3 y3:(float)y3 {
CATransform3D mat = [self quadFromSquare_x0:x0 y0:y0 x1:x1 y1:y1 x2:x2 y2:y2 x3:x3 y3:y3];
// invert through adjoint
float a = mat.m11, d = mat.m21, /* ignore */ g = mat.m41;
float b = mat.m12, e = mat.m22, /* 3rd col*/ h = mat.m42;
/* ignore 3rd row */
float c = mat.m14, f = mat.m24;
float A = e - f * h;
float B = c * h - b;
float C = b * f - c * e;
float D = f * g - d;
float E = a - c * g;
float F = c * d - a * f;
float G = d * h - e * g;
float H = b * g - a * h;
float I = a * e - b * d;
// Probably unnecessary since 'I' is also scaled by the determinant,
// and 'I' scales the homogeneous coordinate, which, in turn,
// scales the X,Y coordinates.
// Determinant = a * (e - f * h) + b * (f * g - d) + c * (d * h - e * g);
float idet = 1.0f / (a * A + b * D + c * G);
mat.m11 = A * idet; mat.m21 = D * idet; mat.m31 = 0; mat.m41 = G * idet;
mat.m12 = B * idet; mat.m22 = E * idet; mat.m32 = 0; mat.m42 = H * idet;
mat.m13 = 0 ; mat.m23 = 0 ; mat.m33 = 1; mat.m43 = 0 ;
mat.m14 = C * idet; mat.m24 = F * idet; mat.m34 = 0; mat.m44 = I * idet;
return mat;
}
После вычисления обеих матриц, умножая их вместе и присваивая рассматриваемому представлению, я получаю преобразованное представление, но оно совершенно неверно. На самом деле, кажется, он сдвигается, как параллелограмм, независимо от того, что я делаю. Что мне не хватает?
ОБНОВЛЕНИЕ 2/1/12
Кажется, причина, по которой я сталкиваюсь с проблемами, может заключаться в том, что мне нужно разместить FOV и фокусное расстояние в матрице просмотра модели (которая является единственной матрицей, которую я могу изменить непосредственно в Quartz.) У меня нет никаких удачи найти документацию в Интернете о том, как рассчитать правильную матрицу, тем не менее.
Ответы
Ответ 1
Я смог добиться этого, портируя и комбинируя код квадранта и гомографии из этих двух URL-адресов:
UPDATE: я открываю небольшой класс, который делает это: https://github.com/dominikhofmann/DHWarpView