так далее...
Расколы идентичны.
Ответ 3
Мое решение до сих пор состояло в том, чтобы просто случайным образом разделить группы. Это может привести к очень неуравновешенным группам (что, по-моему, GroupKFold
было предназначено для отражения), но надежда состоит в том, что количество наблюдений на группу невелико.
from sklearn.utils import shuffle
from sklearn.model_selection import GroupKFold
from numpy.random import RandomState
import numpy as np
import sys
import pdb
random_state = int(sys.argv[1])
X = np.arange(20).reshape((10,2))
y = np.arange(10)
groups = np.array([0,0,0,1,2,3,4,5,6,7])
for el in zip(range(len(y)),X,y,groups):
print "ix, X, y, groups", el
def RandGroupKfold(groups, n_splits, random_state=None, shuffle_groups=False):
ix = np.array(range(len(groups)))
unique_groups = np.unique(groups)
if shuffle_groups:
prng = RandomState(random_state)
prng.shuffle(unique_groups)
splits = np.array_split(unique_groups, n_splits)
train_test_indices = []
for split in splits:
mask = [el in split for el in groups]
train = ix[np.invert(mask)]
test = ix[mask]
train_test_indices.append((train, test))
return train_test_indices
splits = RandGroupKfold(groups, n_splits=3, random_state=random_state, shuffle_groups=True)
for train, test in splits:
print "---"
for el in zip(train, X[train], y[train], groups[train]):
print "train ix, X, y, groups", el
for el in zip(test, X[test], y[test], groups[test]):
print "test ix, X, y, groups", el
Данные:
ix, X, y, groups (0, array([0, 1]), 0, 0)
ix, X, y, groups (1, array([2, 3]), 1, 0)
ix, X, y, groups (2, array([4, 5]), 2, 0)
ix, X, y, groups (3, array([6, 7]), 3, 1)
ix, X, y, groups (4, array([8, 9]), 4, 2)
ix, X, y, groups (5, array([10, 11]), 5, 3)
ix, X, y, groups (6, array([12, 13]), 6, 4)
ix, X, y, groups (7, array([14, 15]), 7, 5)
ix, X, y, groups (8, array([16, 17]), 8, 6)
ix, X, y, groups (9, array([18, 19]), 9, 7)
Случайное состояние как 4
---
train ix, X, y, groups (0, array([0, 1]), 0, 0)
train ix, X, y, groups (1, array([2, 3]), 1, 0)
train ix, X, y, groups (2, array([4, 5]), 2, 0)
train ix, X, y, groups (3, array([6, 7]), 3, 1)
train ix, X, y, groups (4, array([8, 9]), 4, 2)
train ix, X, y, groups (7, array([14, 15]), 7, 5)
train ix, X, y, groups (8, array([16, 17]), 8, 6)
test ix, X, y, groups (5, array([10, 11]), 5, 3)
test ix, X, y, groups (6, array([12, 13]), 6, 4)
test ix, X, y, groups (9, array([18, 19]), 9, 7)
---
train ix, X, y, groups (4, array([8, 9]), 4, 2)
train ix, X, y, groups (5, array([10, 11]), 5, 3)
train ix, X, y, groups (6, array([12, 13]), 6, 4)
train ix, X, y, groups (8, array([16, 17]), 8, 6)
train ix, X, y, groups (9, array([18, 19]), 9, 7)
test ix, X, y, groups (0, array([0, 1]), 0, 0)
test ix, X, y, groups (1, array([2, 3]), 1, 0)
test ix, X, y, groups (2, array([4, 5]), 2, 0)
test ix, X, y, groups (3, array([6, 7]), 3, 1)
test ix, X, y, groups (7, array([14, 15]), 7, 5)
---
train ix, X, y, groups (0, array([0, 1]), 0, 0)
train ix, X, y, groups (1, array([2, 3]), 1, 0)
train ix, X, y, groups (2, array([4, 5]), 2, 0)
train ix, X, y, groups (3, array([6, 7]), 3, 1)
train ix, X, y, groups (5, array([10, 11]), 5, 3)
train ix, X, y, groups (6, array([12, 13]), 6, 4)
train ix, X, y, groups (7, array([14, 15]), 7, 5)
train ix, X, y, groups (9, array([18, 19]), 9, 7)
test ix, X, y, groups (4, array([8, 9]), 4, 2)
test ix, X, y, groups (8, array([16, 17]), 8, 6)
Случайное состояние как 5
---
train ix, X, y, groups (0, array([0, 1]), 0, 0)
train ix, X, y, groups (1, array([2, 3]), 1, 0)
train ix, X, y, groups (2, array([4, 5]), 2, 0)
train ix, X, y, groups (3, array([6, 7]), 3, 1)
train ix, X, y, groups (5, array([10, 11]), 5, 3)
train ix, X, y, groups (7, array([14, 15]), 7, 5)
train ix, X, y, groups (8, array([16, 17]), 8, 6)
test ix, X, y, groups (4, array([8, 9]), 4, 2)
test ix, X, y, groups (6, array([12, 13]), 6, 4)
test ix, X, y, groups (9, array([18, 19]), 9, 7)
---
train ix, X, y, groups (4, array([8, 9]), 4, 2)
train ix, X, y, groups (5, array([10, 11]), 5, 3)
train ix, X, y, groups (6, array([12, 13]), 6, 4)
train ix, X, y, groups (8, array([16, 17]), 8, 6)
train ix, X, y, groups (9, array([18, 19]), 9, 7)
test ix, X, y, groups (0, array([0, 1]), 0, 0)
test ix, X, y, groups (1, array([2, 3]), 1, 0)
test ix, X, y, groups (2, array([4, 5]), 2, 0)
test ix, X, y, groups (3, array([6, 7]), 3, 1)
test ix, X, y, groups (7, array([14, 15]), 7, 5)
---
train ix, X, y, groups (0, array([0, 1]), 0, 0)
train ix, X, y, groups (1, array([2, 3]), 1, 0)
train ix, X, y, groups (2, array([4, 5]), 2, 0)
train ix, X, y, groups (3, array([6, 7]), 3, 1)
train ix, X, y, groups (4, array([8, 9]), 4, 2)
train ix, X, y, groups (6, array([12, 13]), 6, 4)
train ix, X, y, groups (7, array([14, 15]), 7, 5)
train ix, X, y, groups (9, array([18, 19]), 9, 7)
test ix, X, y, groups (5, array([10, 11]), 5, 3)
test ix, X, y, groups (8, array([16, 17]), 8, 6)