Почему фильтр dplyr отбрасывает значения NA из фактор-переменной?
Когда я использую filter
из пакета dplyr
для снижения уровня факторной переменной, filter
также снижает значения NA
. Вот пример:
library(dplyr)
set.seed(919)
(dat <- data.frame(var1 = factor(sample(c(1:3, NA), size = 10, replace = T))))
# var1
# 1 <NA>
# 2 3
# 3 3
# 4 1
# 5 1
# 6 <NA>
# 7 2
# 8 2
# 9 <NA>
# 10 1
filter(dat, var1 != 1)
# var1
# 1 3
# 2 3
# 3 2
# 4 2
Это не кажется идеальным - я хотел только отбросить строки, где var1 == 1
.
Похоже, это происходит потому, что любое сравнение с NA
возвращает NA
, которое затем filter
падает. Так, например, filter(dat, !(var1 %in% 1))
дает правильные результаты. Но есть ли способ сказать filter
не отбрасывать значения NA
?
Ответы
Ответ 1
Вы можете использовать это:
filter(dat, var1 != 1 | is.na(var1))
var1
1 <NA>
2 3
3 3
4 <NA>
5 2
6 2
7 <NA>
И не будет.
Также для завершения, падение NA является предполагаемым поведением filter
, как вы можете видеть из следующего:
test_that("filter discards NA", {
temp <- data.frame(
i = 1:5,
x = c(NA, 1L, 1L, 0L, 0L)
)
res <- filter(temp, x == 1)
expect_equal(nrow(res), 2L)
})
Этот тест выше был взят из тестов для filter
из github.
Ответ 2
Я часто карту identical
с mapply
...
(примечание: я считаю, что из-за изменений в R 3.6.0, set.seed
и sample
заканчиваются различными данными испытаний)
library(dplyr, warn.conflicts = FALSE)
set.seed(919)
(dat <- data.frame(var1 = factor(sample(c(1:3, NA), size = 10, replace = T))))
#> var1
#> 1 3
#> 2 1
#> 3 <NA>
#> 4 3
#> 5 1
#> 6 3
#> 7 2
#> 8 3
#> 9 2
#> 10 1
filter(dat, var1 != 1)
#> var1
#> 1 3
#> 2 3
#> 3 3
#> 4 2
#> 5 3
#> 6 2
filter(dat, !mapply(identical, as.numeric(var1), 1))
#> var1
#> 1 3
#> 2 <NA>
#> 3 3
#> 4 3
#> 5 2
#> 6 3
#> 7 2
он работает и для чисел и строк (вероятно, более распространенный вариант использования)...
library(dplyr, warn.conflicts = FALSE)
set.seed(919)
(dat <- data.frame(var1 = sample(c(1:3, NA), size = 10, replace = T),
var2 = letters[sample(c(1:3, NA), size = 10, replace = T)],
stringsAsFactors = FALSE))
#> var1 var2
#> 1 3 <NA>
#> 2 1 a
#> 3 NA a
#> 4 3 b
#> 5 1 b
#> 6 3 <NA>
#> 7 2 a
#> 8 3 c
#> 9 2 <NA>
#> 10 1 b
filter(dat, !mapply(identical, var1, 1L))
#> var1 var2
#> 1 3 <NA>
#> 2 NA a
#> 3 3 b
#> 4 3 <NA>
#> 5 2 a
#> 6 3 c
#> 7 2 <NA>
filter(dat, !mapply(identical, var2, 'a'))
#> var1 var2
#> 1 3 <NA>
#> 2 3 b
#> 3 1 b
#> 4 3 <NA>
#> 5 3 c
#> 6 2 <NA>
#> 7 1 b