Как суммировать по диагонали кадра данных
Скажем, что у меня есть этот фрейм данных:
1 2 3 4
100 8 12 5 14
99 1 6 4 3
98 2 5 4 11
97 5 3 7 2
В этом вышеописанном фрейме данных значения указывают количество попыток, на которые находят наблюдения (100, 1), (99, 1)
и т.д.
В моем контексте диагонали имеют одинаковые значения:
1 2 3 4
100 A B C D
99 B C D E
98 C D E F
97 D E F G
Как бы я мог суммировать по диагонали (т.е. суммировать числа одинаковых букв) в первом кадре данных?
Это создаст:
group sum
A 8
B 13
C 13
D 28
E 10
F 18
G 2
Например, D
есть 5+5+4+14
Ответы
Ответ 1
Вы можете использовать row()
и col()
для определения связей между строками и столбцами.
m <- read.table(text="
1 2 3 4
100 8 12 5 14
99 1 6 4 3
98 2 5 4 11
97 5 3 7 2")
vals <- sapply(2:8,
function(j) sum(m[row(m)+col(m)==j]))
или (как указано в комментариях от @thelatemail)
vals <- sapply(split(as.matrix(m), row(m) + col(m)), sum)
data.frame(group=LETTERS[seq_along(vals)],sum=vals)
или (@Frank)
data.frame(vals = tapply(as.matrix(m),
(LETTERS[row(m) + col(m)-1]), sum))
as.matrix()
требуется, чтобы split()
работал правильно...
Ответ 2
Другое решение, использующее определение bgoldst df1
и df2
sapply(unique(c(as.matrix(df2))),function(x) sum(df1[df2==x]))
дает
#A B C D E F G
#8 13 13 28 10 18 2
(Не совсем тот формат, который вы хотели, но, возможно, это нормально...)
Ответ 3
Другая вариация aggregate
, исключающая интерфейс формулы, что на самом деле усложняет дело в этом случае:
aggregate(list(Sum=unlist(dat)), list(Group=LETTERS[c(row(dat) + col(dat))-1]), FUN=sum)
# Group Sum
#1 A 8
#2 B 13
#3 C 13
#4 D 28
#5 E 10
#6 F 18
#7 G 2
Ответ 4
Здесь решение с использованием stack()
и aggregate()
, хотя оно требует, чтобы второй data.frame содержал символьные векторы, в отличие от факторов (может быть принудительно с lapply(df2,as.character)
):
df1 <- data.frame(a=c(8,1,2,5), b=c(12,6,5,3), c=c(5,4,4,7), d=c(14,3,11,2) );
df2 <- data.frame(a=c('A','B','C','D'), b=c('B','C','D','E'), c=c('C','D','E','F'), d=c('D','E','F','G'), stringsAsFactors=F );
aggregate(sum~group,data.frame(sum=stack(df1)[,1],group=stack(df2)[,1]),sum);
## group sum
## 1 A 8
## 2 B 13
## 3 C 13
## 4 D 28
## 5 E 10
## 6 F 18
## 7 G 2