Ответ 1
Хорошо, я понял это. Я использовал предложение, которое @baker смотрел между линиями сетки.
Прежде чем сделать это, мне пришлось удалить дубликаты строк из кода преобразования hough. Затем я отсортировал оставшиеся строки в 2 списка по вертикали и по горизонтали. Оттуда я мог бы прокручивать горизонтальный, а затем вертикальный, а затем создавать изображение, представляющее интерес (roi). Каждое изображение roi представляет собой "ячейку" в главном изображении таблицы. Я проверил каждую из этих ячеек на контуры и заметил, что когда в ячейке было "x", len(contours) >= 2
. Таким образом, любой len(contours) < 2
был пустым пространством (я сделал несколько тестовых программ, чтобы понять это). Вот код, который я использовал для его работы:
import cv2
import numpy as np
import os
# the list of images (tables)
images = ['table1.png', 'table2.png', 'table3.png', 'table4.png', 'table5.png']
# the list of templates (used for template matching)
templates = ['train1.png']
def remove_duplicates(lines):
# remove duplicate lines (lines within 10 pixels of eachother)
for x1, y1, x2, y2 in lines:
for index, (x3, y3, x4, y4) in enumerate(lines):
if y1 == y2 and y3 == y4:
diff = abs(y1-y3)
elif x1 == x2 and x3 == x4:
diff = abs(x1-x3)
else:
diff = 0
if diff < 10 and diff is not 0:
del lines[index]
return lines
def sort_line_list(lines):
# sort lines into horizontal and vertical
vertical = []
horizontal = []
for line in lines:
if line[0] == line[2]:
vertical.append(line)
elif line[1] == line[3]:
horizontal.append(line)
vertical.sort()
horizontal.sort(key=lambda x: x[1])
return horizontal, vertical
def hough_transform_p(image, template, tableCnt):
# open and process images
img = cv2.imread('imgs/'+image)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
# probabilistic hough transform
lines = cv2.HoughLinesP(edges, 1, np.pi/180, 200, minLineLength=20, maxLineGap=999)[0].tolist()
# remove duplicates
lines = remove_duplicates(lines)
# draw image
for x1, y1, x2, y2 in lines:
cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 1)
# sort lines into vertical & horizontal lists
horizontal, vertical = sort_line_list(lines)
# go through each horizontal line (aka row)
rows = []
for i, h in enumerate(horizontal):
if i < len(horizontal)-1:
row = []
for j, v in enumerate(vertical):
if i < len(horizontal)-1 and j < len(vertical)-1:
# every cell before last cell
# get width & height
width = horizontal[i+1][1] - h[1]
height = vertical[j+1][0] - v[0]
else:
# last cell, width = cell start to end of image
# get width & height
width = tW
height = tH
tW = width
tH = height
# get roi (region of interest) to find an x
roi = img[h[1]:h[1]+width, v[0]:v[0]+height]
# save image (for testing)
dir = 'imgs/table%s' % (tableCnt+1)
if not os.path.exists(dir):
os.makedirs(dir)
fn = '%s/roi_r%s-c%s.png' % (dir, i, j)
cv2.imwrite(fn, roi)
# if roi contains an x, add x to array, else add _
roi_gry = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(roi_gry, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 1:
# there is an x for 2 or more contours
row.append('x')
else:
# there is no x when len(contours) is <= 1
row.append('_')
row.pop()
rows.append(row)
# save image (for testing)
fn = os.path.splitext(image)[0] + '-hough_p.png'
cv2.imwrite('imgs/'+fn, img)
def process():
for i, img in enumerate(images):
# perform probabilistic hough transform on each image
hough_transform_p(img, templates[0], i)
if __name__ == '__main__':
process()
Итак, образ образца:
И, выход (код для генерации текстового файла был удален для краткости):
Как вы можете видеть, текстовый файл содержит такое же количество x в той же позиции, что и изображение. Теперь, когда сложная часть закончилась, я могу продолжить свое задание!