Ответ 1
Если вы хотите прочитать CSV из URL-адреса, вы можете использовать Requests package как @waTeim показывает, а затем прочитайте данные через IOBuffer. См. Пример ниже.
Или, как @Colin T Bowers, вы могли бы использовать текущий (декабрь 2017 г.) более активно поддерживаемый HTTP.jl следующим образом:
julia> using HTTP
julia> res = HTTP.get("https://www.ferc.gov/docs-filing/eqr/q2-2013/soft-tools/sample-csv/transaction.txt");
julia> mycsv = readcsv(res.body);
julia> for (colnum, myheader) in enumerate(mycsv[1,:])
println(colnum, '\t', myheader)
end
1 transaction_unique_identifier
2 seller_company_name
3 customer_company_name
4 customer_duns_number
5 tariff_reference
6 contract_service_agreement
7 trans_id
8 transaction_begin_date
9 transaction_end_date
10 time_zone
11 point_of_delivery_control_area
12 specific location
13 class_name
14 term_name
15 increment_name
16 increment_peaking_name
17 product_name
18 transaction_quantity
19 price
20 units
21 total_transmission_charge
22 transaction_charge
Использование пакета Requests.jl
:
julia> using Requests
julia> res = get("https://www.ferc.gov/docs-filing/eqr/q2-2013/soft-tools/sample-csv/transaction.txt");
julia> mycsv = readcsv(IOBuffer(res.data));
julia> for (colnum, myheader) in enumerate(mycsv[1,:])
println(colnum, '\t', myheader)
end
1 transaction_unique_identifier
2 seller_company_name
3 customer_company_name
4 customer_duns_number
5 tariff_reference
6 contract_service_agreement
7 trans_id
8 transaction_begin_date
9 transaction_end_date
10 time_zone
11 point_of_delivery_control_area
12 specific location
13 class_name
14 term_name
15 increment_name
16 increment_peaking_name
17 product_name
18 transaction_quantity
19 price
20 units
21 total_transmission_charge
22 transaction_charge