Ответ 1
Как было предложено mrcl, для этого в matplotlib вы можете использовать trisurf
.
Тем не менее, вы должны предоставить свои собственные треугольники, поскольку Delaunay не будет работать над 2-й проекцией ваших очков.
Чтобы построить триангуляцию, я предлагаю построить параметрическое представление вашего сфера (в терминах s, t) и триангуляцию в пространстве (s, t).
Это даст что-то вроде этого
Пример на основе вашего кода ниже (поскольку ваши данные очень грубые, я добавил немного интерполяции):
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
from matplotlib import cm
sample_data = np.array([
[[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]],
[[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]],
[[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]],
[[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.]],
[[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.]],
[[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]
] )
XS, YS, ZS = [],[],[]
for g in xrange(np.shape(sample_data)[0]):
for row in xrange(np.shape(sample_data)[1]):
for col in xrange(np.shape(sample_data)[2]):
if sample_data[g][row][col] == 1:
XS.append(g)
YS.append(col)
ZS.append(row)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(XS, YS, ZS)
XS = np.asarray(XS)
YS = np.asarray(YS)
ZS = np.asarray(ZS)
def re_ordinate(x, y):
ord = np.arange(np.shape(x)[0])
iter = True
itermax = 10
n_iter = 0
while iter and n_iter < itermax:
n_iter += 1
dist1 = (x[0:-2] - x[1:-1])**2 + (y[0:-2] - y[1:-1])**2
dist2 = (x[0:-2] - x[2:])**2 + (y[0:-2] - y[2:])**2
swap = np.argwhere(dist2 < dist1)
for s in swap:
s += 1
t = x[s]
x[s] = x[s+1]
x[s+1] = t
t = y[s]
y[s] = y[s+1]
y[s+1] = t
t = ord[s]
ord[s] = ord[s+1]
ord[s+1] = t
return ord / float(np.size(ord, 0))
# Building parametrisation of the surface
s = np.zeros(np.shape(XS)[0])
t = np.zeros(np.shape(XS)[0])
begin = 0
end = 0
for g in xrange(np.shape(sample_data)[0]):
cut = np.argwhere(XS==g).flatten()
begin = end
end += np.size(cut, 0)
X_loc = XS[cut]
Y_loc = YS[cut]
Z_loc = ZS[cut]
s[begin: end] = g / float(np.size(sample_data, 0))
t[begin: end] = re_ordinate(Y_loc, Z_loc)
#ax.plot(X_loc, Y_loc, Z_loc, color="grey")
triangles = mtri.Triangulation(s, t).triangles
refiner = mtri.UniformTriRefiner(mtri.Triangulation(s, t))
subdiv = 2
_, x_refi = refiner.refine_field(XS, subdiv=subdiv)
_, y_refi = refiner.refine_field(YS, subdiv=subdiv)
triang_param, z_refi = refiner.refine_field(ZS, subdiv=subdiv)
#triang_param = refiner.refine_triangulation()#mtri.Triangulation(XS, YS, triangles)
#print triang_param.triangles
triang = mtri.Triangulation(x_refi, y_refi, triang_param.triangles)
ax.plot_trisurf(triang, z_refi, cmap=cm.jet, lw=0.)
plt.show()