Ответ 1
Приходят на ум два варианта. Сначала используйте isin
и маску:
>>> df
zip x y access
0 123 1 1 4
1 123 1 1 6
2 133 1 2 3
3 145 2 2 3
4 167 3 1 1
5 167 3 1 2
>>> keep = [123, 133]
>>> df_yes = df[df['zip'].isin(keep)]
>>> df_no = df[~df['zip'].isin(keep)]
>>> df_yes
zip x y access
0 123 1 1 4
1 123 1 1 6
2 133 1 2 3
>>> df_no
zip x y access
3 145 2 2 3
4 167 3 1 1
5 167 3 1 2
Во-вторых, используйте groupby
:
>>> grouped = df.groupby(df['zip'].isin(keep))
а затем любой из
>>> grouped.get_group(True)
zip x y access
0 123 1 1 4
1 123 1 1 6
2 133 1 2 3
>>> grouped.get_group(False)
zip x y access
3 145 2 2 3
4 167 3 1 1
5 167 3 1 2
>>> [g for k,g in list(grouped)]
[ zip x y access
3 145 2 2 3
4 167 3 1 1
5 167 3 1 2, zip x y access
0 123 1 1 4
1 123 1 1 6
2 133 1 2 3]
>>> dict(list(grouped))
{False: zip x y access
3 145 2 2 3
4 167 3 1 1
5 167 3 1 2, True: zip x y access
0 123 1 1 4
1 123 1 1 6
2 133 1 2 3}
>>> dict(list(grouped)).values()
[ zip x y access
3 145 2 2 3
4 167 3 1 1
5 167 3 1 2, zip x y access
0 123 1 1 4
1 123 1 1 6
2 133 1 2 3]
Что наиболее важно, зависит от контекста, но я думаю, что вы поняли эту идею.