Ответ 1
Я уверен, что это можно сделать более эффективным, но здесь один подход. По существу, мы следуем вашим советам подмножества данных в разные части, разделяем непрерывные данные на дискретные бункеры, затем патируем все обратно и используем масштаб по собственному выбору.
library(ggplot2)
library(RColorBrewer)
#Sample data
dat <- data.frame(x = rnorm(100), y = rnorm(100), z = rnorm(100))
dat[sample(nrow(dat), 5), 3] <- NA
dat[sample(nrow(dat), 5), 3] <- Inf
#Subset out the real values
dat.good <- dat[!(is.na(dat$z)) & is.finite(dat$z) ,]
#Create 6 breaks for them
dat.good$col <- cut(dat.good$z, 6)
#Grab the bad ones
dat.bad <- dat[is.na(dat$z) | is.infinite(dat$z) ,]
dat.bad$col <- as.character(dat.bad$z)
#Rbind them back together
dat.plot <- rbind(dat.good, dat.bad)
#Make your own scale with RColorBrewer
yourScale <- c(brewer.pal(6, "Blues"), "red","green")
ggplot(dat.plot, aes(x,y, colour = col)) +
geom_point() +
scale_colour_manual("Intensity", values = yourScale)