Ответ 1
Во-первых, вам нужно разделить сигнал в малогабаритных кадрах с 10 до 30 мс, применить функцию оконной обработки (напевание рекомендуется для звуковых приложений) и вычислить преобразование Фурье сигнала. С DFT, чтобы вычислить Mel Frequecy Cepstral Coefficients, вам необходимо выполнить следующие действия:
- Получить спектр мощности: | DFT | ^ 2
- Вычислить треугольный банковский фильтр для преобразования шкалы hz в шкалу масштаба
- Получить спектр журналов
- Применить дискретное преобразование косина
Пример кода python:
import numpy
from scipy.fftpack import dct
from scipy.io import wavfile
sampleRate, signal = wavfile.read("file.wav")
numCoefficients = 13 # choose the sive of mfcc array
minHz = 0
maxHz = 22.000
complexSpectrum = numpy.fft(signal)
powerSpectrum = abs(complexSpectrum) ** 2
filteredSpectrum = numpy.dot(powerSpectrum, melFilterBank())
logSpectrum = numpy.log(filteredSpectrum)
dctSpectrum = dct(logSpectrum, type=2) # MFCC :)
def melFilterBank(blockSize):
numBands = int(numCoefficients)
maxMel = int(freqToMel(maxHz))
minMel = int(freqToMel(minHz))
# Create a matrix for triangular filters, one row per filter
filterMatrix = numpy.zeros((numBands, blockSize))
melRange = numpy.array(xrange(numBands + 2))
melCenterFilters = melRange * (maxMel - minMel) / (numBands + 1) + minMel
# each array index represent the center of each triangular filter
aux = numpy.log(1 + 1000.0 / 700.0) / 1000.0
aux = (numpy.exp(melCenterFilters * aux) - 1) / 22050
aux = 0.5 + 700 * blockSize * aux
aux = numpy.floor(aux) # Arredonda pra baixo
centerIndex = numpy.array(aux, int) # Get int values
for i in xrange(numBands):
start, centre, end = centerIndex[i:i + 3]
k1 = numpy.float32(centre - start)
k2 = numpy.float32(end - centre)
up = (numpy.array(xrange(start, centre)) - start) / k1
down = (end - numpy.array(xrange(centre, end))) / k2
filterMatrix[i][start:centre] = up
filterMatrix[i][centre:end] = down
return filterMatrix.transpose()
def freqToMel(freq):
return 1127.01048 * math.log(1 + freq / 700.0)
def melToFreq(mel):
return 700 * (math.exp(mel / 1127.01048) - 1)
Этот код основан на примере Vamp MFCC. Надеюсь, это поможет вам!