Вычислите, как значение отличается от среднего значения с использованием плотности гауссовского ядра (Python)
Я использую этот код для вычисления гауссовой плотности ядра по этим значениям
from random import randint
x_grid=[]
for i in range(1000):
x_grid.append(randint(0,4))
print (x_grid)
Это код для вычисления плотности гауссовского ядра
from statsmodels.nonparametric.kde import KDEUnivariate
import matplotlib.pyplot as plt
def kde_statsmodels_u(x, x_grid, bandwidth=0.2, **kwargs):
"""Univariate Kernel Density Estimation with Statsmodels"""
kde = KDEUnivariate(x)
kde.fit(bw=bandwidth, **kwargs)
return kde.evaluate(x_grid)
import numpy as np
from scipy.stats.distributions import norm
# The grid we'll use for plotting
from random import randint
x_grid=[]
for i in range(1000):
x_grid.append(randint(0,4))
print (x_grid)
# Draw points from a bimodal distribution in 1D
np.random.seed(0)
x = np.concatenate([norm(-1, 1.).rvs(400),
norm(1, 0.3).rvs(100)])
pdf_true = (0.8 * norm(-1, 1).pdf(x_grid) +
0.2 * norm(1, 0.3).pdf(x_grid))
# Plot the three kernel density estimates
fig, ax = plt.subplots(1, 2, sharey=True, figsize=(13, 8))
fig.subplots_adjust(wspace=0)
pdf=kde_statsmodels_u(x, x_grid, bandwidth=0.2)
ax[0].plot(x_grid, pdf, color='blue', alpha=0.5, lw=3)
ax[0].fill(x_grid, pdf_true, ec='gray', fc='gray', alpha=0.4)
ax[0].set_title("kde_statsmodels_u")
ax[0].set_xlim(-4.5, 3.5)
plt.show()
Все значения в сетке находятся между 0 e 4. Если я получаю новое значение 5, я хочу рассчитать, как это значение отличается от средних значений и присваивает ему оценку от 0 до 1. (установка порога )
Итак, если я получу в качестве нового значения 5, его оценка должна быть близка к 0.90, в то время как если я получу новое значение 500, его оценка должна быть близка к 0.0.
Как я могу это сделать? Является ли моя функция правильно вычислять плотность гауссовского ядра или есть лучший способ/библиотека для этого?
* ОБНОВЛЕНИЕ *
Я прочитал пример в газете.
Вес стиральной машины обычно составляет 100 кг. Обычно продавцы используют блок кг, чтобы также указать его емкость (пример 9 кг). Для человека легко понять, что 9 gk - это емкость, а не общий вес стиральной машины. Мы можем "подделать" эту форму интеллекта без глубокого понимания языка, вместо этого
моделирование распределения значений по данным обучения для каждого
атрибут.
Для данного атрибута a (например, вес стиральной машины), Va = {va1, va2,., van} (| Va | = n) - множество значений атрибута a, соответствующего продуктам
в данных обучения. Если я нашел новое значение v Интуитивно он "близок" (
распределение по оценкам от) Va, тогда мы должны более уверенно присваивать это значение (пример веса стиральной машины).
Идея может заключаться в измерении числа стандартных отклонений на
которое новое значение v отличается от среднего значения Va, но лучше было бы моделировать плотность гауссовского ядра на Va, а затем выразить носитель при новом значении v как плотность в этой точке:
![enter image description here]()
где где σ ^ (2) ak - дисперсия k-го гаусса, а Z -
константу, чтобы убедиться, что S (c.s.v, Va) ∈ [0, 1]. Как я могу получить его в Python с помощью библиотеки statsmodels?
* ОБНОВЛЕНО 2 *
Пример данных... но я думаю, что это не очень важно...
Сгенерировано этим кодом...
from random import randint
x_grid=[]
for i in range(1000):
x_grid.append(randint(1,3))
print (x_grid)
2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 2, 1, 1, 1, 2, 3, 2, 1, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 2, 2, 3, 3, 1, 1, 2, 3, 3, 2, 1, 2, 3, 3, 3, 3, 2, 1, 3, 2, 2, 1, 3, 2, 3, 1, 2, 3, 3, 1, 2, 3, 1, 2, 2, 2, 3, 2, 3, 3, 1, 1, 3, 2, 1, 1, 3, 3, 3, 2, 1, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 1, 3, 2, 2, 1, 1, 2, 2, 3, 1, 1, 3, 2, 2, 1, 2, 1, 2, 3, 1, 3, 3, 1, 2, 1, 2, 1, 3, 1, 3, 3, 2, 1, 1, 3, 2, 2, 2, 3, 2, 1, 3, 2, 1, 1, 3, 3, 3, 2, 1, 1, 3, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 1, 1, 2, 2, 1, 1, 1, 3, 3, 3, 3, 1, 3, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 1, 2, 3, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 3, 1, 1, 1, 3, 1, 3, 2, 2, 3, 1, 3, 3, 2, 2, 3, 2, 1, 2, 1, 1, 1, 2, 2, 3, 2, 1, 1, 3, 1, 2, 1, 3, 3, 3, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 3, 1, 3, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3, 3, 2, 3, 2, 1, 3, 3, 3, 3, 3, 1, 2, 2, 2, 1, 1, 3, 2, 3, 1, 2, 3, 2, 3, 2, 1, 1, 3, 3, 1, 1, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 2, 3, 2, 3, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 3, 3, 2, 2, 3, 3, 3, 2, 1, 1, 2, 2, 3, 2, 3, 2, 1, 1, 1, 1, 2, 3, 1, 3, 3, 3, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 2, 1, 3, 3, 2, 1, 1, 3, 1, 3, 1, 2, 2, 1, 3, 3, 2, 3, 1, 1, 3, 1, 2, 2, 1, 3, 2, 3, 1, 1, 3, 1, 3, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 1, 3, 3, 2, 3, 2, 1, 3, 1, 2, 1, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 1, 3, 2, 3, 1, 1, 2, 1, 3, 1, 2, 2, 3, 3, 1, 3, 1, 1, 2, 2, 1, 3, 3, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 3, 3, 3, 1, 1, 2, 3, 3, 1, 1, 2, 3, 2, 3, 3, 2, 2, 1, 3, 3, 3, 3, 2, 3, 1, 3, 3, 2, 1, 3, 2, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 3, 1, 1, 1, 1, 3, 1, 2, 3, 3, 3, 3, 1, 2, 2, 2, 3, 2, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 3, 2, 1, 1, 1, 2, 3, 1, 3, 3, 2, 1, 3, 3, 3, 2, 2, 1, 2, 3, 2, 3, 3, 3, 3, 2, 3, 2, 1, 2, 1, 1, 3, 3, 3, 2, 2, 3, 1, 3, 2, 1, 3, 1, 1, 3, 3, 1, 2, 2, 2, 3, 3, 1, 2, 1, 2, 1, 3, 2, 3, 3, 3, 3, 3, 3, 3, 1, 2, 3, 1, 3, 3, 2, 2, 1, 3, 1, 1, 3, 2, 1, 2, 3, 2, 1, 3, 3, 3, 2, 3, 1, 2, 3, 3, 1, 2, 2, 2, 3, 1, 2, 1, 1, 1, 3, 1, 3, 1, 3, 3, 2, 3, 1, 3, 2, 3, 3, 1, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 1, 1, 3, 3, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 3, 3, 1, 3, 1, 1, 1, 1, 3, 2, 1, 2, 3, 1, 1, 3, 1, 1, 3, 1, 3, 3, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 2, 2, 3, 1, 2, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 3, 1, 3, 1, 1, 3, 2, 2, 3, 2, 2, 3, 3, 1, 1, 2, 2, 3, 1, 1, 2, 3, 2, 2, 3, 1, 2, 2, 1, 1, 3, 2, 3, 1, 1, 3, 1, 3, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 1, 1, 1, 3, 3, 1, 2, 1, 3, 2, 3, 2, 2, 1, 2, 3, 3, 1, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 3, 1, 3, 1, 3, 2, 3, 1, 3, 3, 3, 1, 1, 2, 2, 3, 2, 3, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 1, 1, 2, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 2, 2, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 3, 3, 2, 3, 1, 3]
Этот массив представляет собой плунжер новых смартфонов на рынке... Обычно они имеют 1,2,3 ГБ оперативной памяти.
То, что плотность ядра
![enter image description here]()
*** ОБНОВЛЕНИЕ
Я пробую код с этими значениями
[1024, 1, 1024, 1000, 1024, 128, 1536, 16, 192, 2048, 2000, 2048, 24, 250, 256, 278, 288, 290, 3072, 3, 3000, 3072, 32, 384, 4096, 4, 4096, 448, 45, 512, 576, 64, 768, 8, 96]
Значения все в мб... как вы думаете, это хорошо работает? Я думаю, что я должен установить порог
100% cdfv kdev
1 42 0.210097 0.499734
1024 96 0.479597 0.499983
5000 0 0.000359 0.498885
2048 36 0.181609 0.499700
3048 8 0.040299 0.499424
* ОБНОВЛЕНИЕ 3 *
[256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 256, 256, 256, 512, 512, 512, 128, 128, 128, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 128, 128, 128, 512, 512, 512, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 512, 512, 512, 128, 128, 128, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 4, 4, 4, 3, 3, 3, 24, 24, 24, 8, 8, 8, 16, 16, 16, 16, 16, 16, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 2048, 2048, 2048, 2048, 2048, 2048, 4096, 4096, 4096, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 768, 768, 768, 768, 768, 768, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 512, 512, 512, 256, 256, 256, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 3072, 3072, 3072, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 256, 256, 256, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 512, 512, 512, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 64, 64, 64, 1024, 1024, 1024, 1024, 1024, 1024, 256, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 576, 576, 576, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 576, 576, 576, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 2048, 2048, 2048, 768, 768, 768, 768, 768, 768, 768, 768, 768, 512, 512, 512, 192, 192, 192, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 384, 384, 384, 448, 448, 448, 576, 576, 576, 384, 384, 384, 288, 288, 288, 768, 768, 768, 384, 384, 384, 288, 288, 288, 64, 64, 64, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 128, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 256, 256, 256, 768, 768, 768, 768, 768, 768, 768, 768, 768, 256, 256, 256, 192, 192, 192, 256, 256, 256, 64, 64, 64, 256, 256, 256, 192, 192, 192, 128, 128, 128, 256, 256, 256, 192, 192, 192, 288, 288, 288, 288, 288, 288, 288, 288, 288, 288, 288, 288, 128, 128, 128, 128, 128, 128, 384, 384, 384, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 32, 32, 32, 768, 768, 768, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 1024, 1024, 1024, 1024, 1024, 1024, 128, 128, 128, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 3072, 3072, 3072, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048, 384, 384, 384, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 128, 128, 128, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 768, 768, 768, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 128, 128, 128, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 64, 64, 64, 64, 64, 64, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 16, 16, 16, 3072, 3072, 3072, 3072, 3072, 3072, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 32, 32, 32, 1024, 1024, 1024, 1024, 1024, 1024, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 32, 32, 32, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 1, 1, 1, 1024, 1024, 1024, 32, 32, 32, 32, 32, 32, 45, 45, 45, 8, 8, 8, 512, 512, 512, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 16, 16, 16, 4, 4, 4, 4, 4, 4, 4, 4, 4, 16, 16, 16, 16, 16, 16, 16, 16, 16, 64, 64, 64, 8, 8, 8, 8, 8, 8, 8, 8, 8, 64, 64, 64, 64, 64, 64, 256, 256, 256, 64, 64, 64, 64, 64, 64, 512, 512, 512, 512, 512, 512, 512, 512, 512, 32, 32, 32, 32, 32, 32, 32, 32, 32, 128, 128, 128, 128, 128, 128, 128, 128, 128, 32, 32, 32, 128, 128, 128, 64, 64, 64, 64, 64, 64, 16, 16, 16, 256, 256, 256, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 256, 256, 256, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 256, 256, 256, 3072, 3072, 3072, 3072, 3072, 3072, 128, 128, 128, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 128, 128, 128, 128, 128, 128, 64, 64, 64, 256, 256, 256, 256, 256, 256, 512, 512, 512, 768, 768, 768, 768, 768, 768, 16, 16, 16, 32, 32, 32, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 512, 512, 512, 2048, 2048, 2048, 1024, 1024, 1024, 3072, 3072, 3072, 3072, 3072, 3072, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 3072, 3072, 3072, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 64, 64, 64, 96, 96, 96, 512, 512, 512, 64, 64, 64, 64, 64, 64, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 3072, 3072, 3072, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 64, 64, 64, 64, 64, 64, 256, 256, 256, 1024, 1024, 1024, 512, 512, 512, 256, 256, 256, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 3072, 3072, 3072, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048]
С этими данными, если я попробую как новое значение, это число
# new values
x = np.asarray([128,512,1024,2048,3072,2800])
Что-то не так с 3072 (все значения указаны в MB).
Это результат:
100% cdfv kdev
128 26 0.129688 0.499376
512 55 0.275874 0.499671
1024 91 0.454159 0.499936
2048 12 0.062298 0.499150
3072 0 0.001556 0.498364
2800 1 0.004954 0.498573
Я не могу понять, почему это происходит... значение 3072 появляется много времени в данных...
Это гистограмма моих данных... это очень странно, потому что есть значения для 3072, а также для 4096.
![enter image description here]()
Ответы
Ответ 1
Несколько общих комментариев, не вдаваясь в детали statsmodels.
У statsmodels также есть ядра cdf, но я не помню, насколько хорошо они работают, и я не думаю, что у него есть автоматический выбор полосы пропускания для него.
Связано с ответом glen_b, что ali_m связано с комментарием:
Оценка cdf сходится гораздо быстрее к истинному распределению, чем оценка плотности по мере роста выборки. Чтобы сбалансировать компромисс между смещением и дисперсией, мы должны использовать меньшую полосу пропускания для ядер cdf, что является неопределенным относительно оценки плотности. Оценки должны быть более точными, чем соответствующие оценки плотности.
Число наблюдений за хвостом:
Если ваше наибольшее наблюдение в выборке равно 4, и вы хотите знать cdf в 5, то ваши данные не имеют никакой информации об этом. Для хвостов, где у вас мало наблюдений, дисперсия непараметрической оценки, такой как оценки распределения ядра, будет относительной относительной (это 1e-5 или 1e-20?).
В качестве альтернативы оценке плотности ядра или распределения ядра мы можем оценить распределение Парето для хвостовых частей. Например, возьмите наибольшие 10 или 20 процентов наблюдений и установите распределение Парето и используйте это, чтобы экстраполировать плотность хвоста.
Существует несколько пакетов Python для оценки powerlaw, которые могут быть использованы для этого.
Обновление
Ниже показано, как вычислять "отдаленность" с использованием предположения о параметрическом нормальном распределении и оценки плотности гауссовского ядра с фиксированной шириной полосы.
Это действительно правильно, если образец приходит из непрерывного распределения или может быть аппроксимирован непрерывным распределением. Здесь мы делаем вид, что образец, который имеет только 3 различных значения, поступает из нормального распределения.
По сути, вычисленное значение cdf похоже на меру расстояния, а не на вероятность дискретной случайной величины.
Это использует kde из scipy.stats с фиксированной пропускной способностью вместо версии statsmodels.
Я не уверен, как ширина полосы пропускания установлена в scipy gaussian_kde, поэтому мой выбор фиксированной полосы пропускания, равный scale
, скорее всего, неверен. Я не знаю, как бы я выбрал пропускную способность, если есть только три разных значения, данных в информации недостаточно. Полоса пропускания по умолчанию предназначена для распределений, которые являются приблизительно нормальными или, по крайней мере, одиночными.
import numpy as np
from scipy import stats
# data
ram = np.array([2, <truncated from data in description>, 3])
loc = ram.mean()
scale = ram.std()
# new values
x = np.asarray([-1, 0, 2, 3, 4, 5, 100])
# assume normal distribution
cdf_val = stats.norm.cdf(x, loc=loc, scale=scale)
cdfv = np.minimum(cdf_val, 1 - cdf_val)
# use gaussian kde but fix bandwidth
kde = stats.gaussian_kde(ram, bw_method=scale)
kde_val = np.asarray([kde.integrate_box_1d(-np.inf, xx) for xx in x])
kdev = np.minimum(kde_val, 1 - kde_val)
#print(np.column_stack((x, cdfv, kdev)))
# use pandas for prettier table
import pandas as pd
print(pd.DataFrame({'cdfv': cdfv, 'kdev': kdev}, index=x))
'''
cdfv kdev
-1 0.000096 0.000417
0 0.006171 0.021262
2 0.479955 0.482227
3 0.119854 0.199565
5 0.000143 0.000472
100 0.000000 0.000000
'''