Ответ 1
Я предполагаю, что у вас уже есть DataFrame. В этом случае вы можете просто превратить столбцы в MultiIndex и использовать стек, а затем reset_index. Обратите внимание, что вам нужно будет переименовать и изменить порядок столбцов и отсортировать по образцу, чтобы получить именно то, что вы разместили в вопросе:
In [4]: df = pandas.DataFrame({"s1_x": scipy.randn(10), "s1_y": scipy.randn(10), "s2_x": scipy.randn(10), "s2_y": scipy.randn(10)})
In [5]: df.columns = pandas.MultiIndex.from_tuples([tuple(c.split('_')) for c in df.columns])
In [6]: df.stack(0).reset_index(1)
Out[6]:
level_1 x y
0 s1 0.897994 -0.278357
0 s2 -0.008126 -1.701865
1 s1 -1.354633 -0.890960
1 s2 -0.773428 0.003501
2 s1 -1.499422 -1.518993
2 s2 0.240226 1.773427
3 s1 -1.090921 0.847064
3 s2 -1.061303 1.557871
4 s1 -1.697340 -0.160952
4 s2 -0.930642 0.182060
5 s1 -0.356076 -0.661811
5 s2 0.539875 -1.033523
6 s1 -0.687861 -1.450762
6 s2 0.700193 0.658959
7 s1 -0.130422 -0.826465
7 s2 -0.423473 -1.281856
8 s1 0.306983 0.433856
8 s2 0.097279 -0.256159
9 s1 0.498057 0.147243
9 s2 1.312578 0.111837
Вы можете сохранить преобразование MultiIndex, если вы можете просто создать DataFrame с помощью MultiIndex.
Изменить: используйте merge для соединения исходных идентификаторов в
In [59]: df
Out[59]:
names s1_x s1_y s2_x s2_y
0 0 0.732099 0.018387 0.299856 0.737142
1 1 0.914755 -0.798159 -0.732868 -1.279311
2 2 -1.063558 0.161779 -0.115751 -0.251157
3 3 -1.185501 0.095147 -1.343139 -0.003084
4 4 0.622400 -0.299726 0.198710 -0.383060
5 5 0.179318 0.066029 -0.635507 1.366786
6 6 -0.820099 0.066067 1.113402 0.002872
7 7 0.711627 -0.182925 1.391194 -2.788434
8 8 -1.124092 1.303375 0.202691 -0.225993
9 9 -0.179026 0.847466 -1.480708 -0.497067
In [60]: id = df.ix[:, ['names']]
In [61]: df.columns = pandas.MultiIndex.from_tuples([tuple(c.split('_')) for c in df.columns])
In [62]: pandas.merge(df.stack(0).reset_index(1), id, left_index=True, right_index=True)
Out[62]:
level_1 x y names
0 s1 0.732099 0.018387 0
0 s2 0.299856 0.737142 0
1 s1 0.914755 -0.798159 1
1 s2 -0.732868 -1.279311 1
2 s1 -1.063558 0.161779 2
2 s2 -0.115751 -0.251157 2
3 s1 -1.185501 0.095147 3
3 s2 -1.343139 -0.003084 3
4 s1 0.622400 -0.299726 4
4 s2 0.198710 -0.383060 4
5 s1 0.179318 0.066029 5
5 s2 -0.635507 1.366786 5
6 s1 -0.820099 0.066067 6
6 s2 1.113402 0.002872 6
7 s1 0.711627 -0.182925 7
7 s2 1.391194 -2.788434 7
8 s1 -1.124092 1.303375 8
8 s2 0.202691 -0.225993 8
9 s1 -0.179026 0.847466 9
9 s2 -1.480708 -0.497067 9
В качестве альтернативы:
In [64]: df
Out[64]:
names s1_x s1_y s2_x s2_y
0 0 0.744742 -1.123403 0.212736 0.005440
1 1 0.465075 -0.673491 1.467156 -0.176298
2 2 -1.111566 0.168043 -0.102142 -1.072461
3 3 1.226537 -1.147357 -1.583762 -1.236582
4 4 1.137675 0.224422 0.738988 1.528416
5 5 -0.237014 -1.110303 -0.770221 1.389714
6 6 -0.659213 2.305374 -0.326253 1.416778
7 7 1.524214 -0.395451 -1.884197 0.524606
8 8 0.375112 -0.622555 0.295336 0.927208
9 9 1.168386 -0.291899 -1.462098 0.250889
In [65]: df = df.set_index('names')
In [66]: df.columns = pandas.MultiIndex.from_tuples([tuple(c.split('_')) for c in df.columns])
In [67]: df.stack(0).reset_index(1)
Out[67]:
level_1 x y
names
0 s1 0.744742 -1.123403
0 s2 0.212736 0.005440
1 s1 0.465075 -0.673491
1 s2 1.467156 -0.176298
2 s1 -1.111566 0.168043
2 s2 -0.102142 -1.072461
3 s1 1.226537 -1.147357
3 s2 -1.583762 -1.236582
4 s1 1.137675 0.224422
4 s2 0.738988 1.528416
5 s1 -0.237014 -1.110303
5 s2 -0.770221 1.389714
6 s1 -0.659213 2.305374
6 s2 -0.326253 1.416778
7 s1 1.524214 -0.395451
7 s2 -1.884197 0.524606
8 s1 0.375112 -0.622555
8 s2 0.295336 0.927208
9 s1 1.168386 -0.291899
9 s2 -1.462098 0.250889