Факторизация Python
Я просто хотел бы узнать лучший способ перечисления всех целочисленных факторов числа, учитывая словарь его простых факторов и их экспонентов.
Например, если мы имеем {2: 3, 3: 2, 5: 1} (2 ^ 3 * 3 ^ 2 * 5 = 360)
Тогда я мог бы написать:
for i in range(4):
for j in range(3):
for k in range(1):
print 2**i * 3**j * 5**k
Но здесь у меня есть 3 ужасных цикла. Можно ли абстрагировать это на функцию, заданную любой факторизацией в качестве аргумента объекта словаря?
Ответы
Ответ 1
Ну, не только у вас есть 3 цикла, но этот подход не будет работать, если у вас есть более 3 факторов:)
Один из возможных способов:
def genfactors(fdict):
factors = set([1])
for factor, count in fdict.iteritems():
for ignore in range(count):
factors.update([n*factor for n in factors])
# that line could also be:
# factors.update(map(lambda e: e*factor, factors))
return factors
factors = {2:3, 3:2, 5:1}
for factor in genfactors(factors):
print factor
Кроме того, вы можете избежать дублирования некоторой работы во внутреннем цикле: если ваш рабочий набор равен (1,3) и хотите применить к факторам 2 ^ 3, мы делаем:
-
(1,3) U (1,3)*2 = (1,2,3,6)
-
(1,2,3,6) U (1,2,3,6)*2 = (1,2,3,4,6,12)
-
(1,2,3,4,6,12) U (1,2,3,4,6,12)*2 = (1,2,3,4,6,8,12,24)
Посмотрите, сколько дубликатов у нас есть во вторых наборах?
Но мы можем сделать вместо этого:
-
(1,3) + (1,3)*2 = (1,2,3,6)
-
(1,2,3,6) + ((1,3)*2)*2 = (1,2,3,4,6,12)
-
(1,2,3,4,6,12) + (((1,3)*2)*2)*2 = (1,2,3,4,6,8,12,24)
Решение выглядит даже приятнее без наборов:
def genfactors(fdict):
factors = [1]
for factor, count in fdict.iteritems():
newfactors = factors
for ignore in range(count):
newfactors = map(lambda e: e*factor, newfactors)
factors += newfactors
return factors
Ответ 2
У меня blogged об этом, а самый быстрый чистый python (без itertools) происходит из сообщения Тима Петерса в список python и использует вложенные рекурсивные генераторы:
def divisors(factors) :
"""
Generates all divisors, unordered, from the prime factorization.
"""
ps = sorted(set(factors))
omega = len(ps)
def rec_gen(n = 0) :
if n == omega :
yield 1
else :
pows = [1]
for j in xrange(factors.count(ps[n])) :
pows += [pows[-1] * ps[n]]
for q in rec_gen(n + 1) :
for p in pows :
yield p * q
for p in rec_gen() :
yield p
Обратите внимание, что так, как он написан, он принимает список простых факторов, а не словарь, т.е. [2, 2, 2, 3, 3, 5]
вместо {2 : 3, 3 : 2, 5 : 1}
.
Ответ 3
Используя itertools.product
из Python 2.6:
#!/usr/bin/env python
import itertools, operator
def all_factors(prime_dict):
series = [[p**e for e in range(maxe+1)] for p, maxe in prime_dict.items()]
for multipliers in itertools.product(*series):
yield reduce(operator.mul, multipliers)
Пример:
print sorted(all_factors({2:3, 3:2, 5:1}))
Вывод:
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60,
72, 90, 120, 180, 360]
Ответ 4
Да. Когда у вас есть алгоритм, для которого требуется n вложенных циклов, вы обычно можете превратить его в рекурсивную функцию:
def print_factors(d, product=1):
if len(d) == 0: # Base case: we've dealt with all prime factors, so
print product # Just print the product
return
d2 = dict(d) # Copy the dict because we don't want to modify it
k,v = d2.popitem() # Pick any k**v pair from it
for i in range(v+1): # For all possible powers i of k from 0 to v (inclusive)
# Multiply the product by k**i and recurse.
print_factors(d2, product*k**i)
d = {2:3, 3:2, 5:1}
print_factors(d)
Ответ 5
В принципе, у вас есть набор, состоящий из каждого коэффициента целевого номера. В вашем примере набор будет {2 2 2 3 3 5}
. Каждое строгое подмножество этого множества является факторизацией одного из делителей вашего числа, поэтому, если вы можете сгенерировать все подмножества этого набора, вы можете умножить элементы каждого подмножества вместе и получить все целые делители.
Код должен быть довольно очевидным: создать список, содержащий факторизацию, сгенерировать все подмножества этого списка (бонусные баллы за использование генератора, я думаю, что там есть соответствующая функция в стандартной библиотеке). Затем умножьте и идите оттуда. Не оптимально эффективно, но приятно выглядеть.