Ответ 1
То, что вы хотите, невозможно без пользовательского UDF. В Scala вы можете сделать что-то вроде этого:
val data = sc.parallelize(Seq(
"""{"userId": 1, "someString": "example1",
"varA": [0, 2, 5], "varB": [1, 2, 9]}""",
"""{"userId": 2, "someString": "example2",
"varA": [1, 20, 5], "varB": [9, null, 6]}"""
))
val df = sqlContext.read.json(data)
df.printSchema
// root
// |-- someString: string (nullable = true)
// |-- userId: long (nullable = true)
// |-- varA: array (nullable = true)
// | |-- element: long (containsNull = true)
// |-- varB: array (nullable = true)
// | |-- element: long (containsNull = true)
Теперь мы можем определить zip
udf:
import org.apache.spark.sql.functions.{udf, explode}
val zip = udf((xs: Seq[Long], ys: Seq[Long]) => xs.zip(ys))
df.withColumn("vars", explode(zip($"varA", $"varB"))).select(
$"userId", $"someString",
$"vars._1".alias("varA"), $"vars._2".alias("varB")).show
// +------+----------+----+----+
// |userId|someString|varA|varB|
// +------+----------+----+----+
// | 1| example1| 0| 1|
// | 1| example1| 2| 2|
// | 1| example1| 5| 9|
// | 2| example2| 1| 9|
// | 2| example2| 20|null|
// | 2| example2| 5| 6|
// +------+----------+----+----+
С сырым SQL:
sqlContext.udf.register("zip", (xs: Seq[Long], ys: Seq[Long]) => xs.zip(ys))
df.registerTempTable("df")
sqlContext.sql(
"""SELECT userId, someString, explode(zip(varA, varB)) AS vars FROM df""")