Перестройка данных в R с "логином" "выводом" раз
Я новичок в R, и я работаю над побочным проектом для моих собственных целей. У меня есть эти данные (воспроизводимая величина этого вопроса находится в конце вопроса):
X datetime user state
1 1 2016-02-19 19:13:26 User1 joined
2 2 2016-02-19 19:21:18 User2 joined
3 3 2016-02-19 19:21:33 User1 joined
4 4 2016-02-19 19:35:38 User1 joined
5 5 2016-02-19 19:44:15 User1 joined
6 6 2016-02-19 19:48:55 User1 joined
7 7 2016-02-19 19:52:40 User1 joined
8 8 2016-02-19 19:53:15 User3 joined
9 9 2016-02-19 20:02:34 User3 joined
10 10 2016-02-19 20:13:48 User3 joined
19 637 2016-02-19 19:13:32 User1 left
20 638 2016-02-19 19:25:26 User1 left
21 639 2016-02-19 19:30:30 User2 left
22 640 2016-02-19 19:42:16 User1 left
23 641 2016-02-19 19:47:59 User1 left
24 642 2016-02-19 19:51:06 User1 left
25 643 2016-02-19 20:02:26 User3 left
Я хочу, чтобы это выглядело так:
user joined left
1 User1 2016-02-19 19:13:26 2016-02-19 19:13:32
2 User2 2016-02-19 19:21:18 2016-02-19 19:30:30
3 User3 2016-02-19 19:53:15 2016-02-19 20:02:26
4 User1 2016-02-19 19:21:33 2016-02-19 19:25:26
.
.
.
Я смотрю на тидыр, потому что некоторые изменения меняются явно, но я не могу окунуться в то, что именно нужно сделать. Возможно ли это (без циклирования/массивного количества процедурного кода)? Проблема, которую я не могу понять, как обойти, заключается в том, что нет способа узнать, что конкретная "левая" запись должна быть присоединена к определенной "объединенной" записи. Примеры, которые я могу найти, включают статический месяц или день, по которому собираются другие значения. Я должен добавить, что это не обязательно гарантирует, что все записи гарантированно имеют "левое" значение (пользователь может быть "присоединен" ).
Здесь выходной вывод выборки данных:
> dput(samp)
structure(list(X = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 637L, 638L, 639L, 640L,
641L, 642L, 643L, 644L, 645L, 646L, 647L, 648L, 649L, 650L, 651L
), datetime = structure(c(1L, 3L, 4L, 7L, 9L, 11L, 13L, 14L,
16L, 18L, 21L, 22L, 23L, 26L, 27L, 30L, 32L, 33L, 2L, 5L, 6L,
8L, 10L, 12L, 15L, 17L, 19L, 20L, 24L, 25L, 28L, 29L, 31L), .Label = c("2016-02-19 19:13:26",
"2016-02-19 19:13:32", "2016-02-19 19:21:18", "2016-02-19 19:21:33",
"2016-02-19 19:25:26", "2016-02-19 19:30:30", "2016-02-19 19:35:38",
"2016-02-19 19:42:16", "2016-02-19 19:44:15", "2016-02-19 19:47:59",
"2016-02-19 19:48:55", "2016-02-19 19:51:06", "2016-02-19 19:52:40",
"2016-02-19 19:53:15", "2016-02-19 20:02:26", "2016-02-19 20:02:34",
"2016-02-19 20:13:38", "2016-02-19 20:13:48", "2016-02-19 20:42:27",
"2016-02-19 20:48:22", "2016-02-19 20:49:31", "2016-02-19 20:59:58",
"2016-02-19 21:06:20", "2016-02-19 21:10:43", "2016-02-19 21:11:13",
"2016-02-19 21:11:15", "2016-02-19 21:11:22", "2016-02-19 21:17:33",
"2016-02-19 22:02:45", "2016-02-19 22:05:18", "2016-02-19 22:05:37",
"2016-02-19 22:05:47", "2016-02-19 22:30:30"), class = "factor"),
user = structure(c(1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L,
3L, 4L, 1L, 1L, 4L, 4L, 4L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 3L,
3L, 3L, 1L, 4L, 1L, 1L, 4L, 4L), .Label = c("User1", "User2",
"User3", "User4"), class = "factor"), state = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L), .Label = c("joined", "left"), class = "factor")), .Names = c("X",
"datetime", "user", "state"), class = "data.frame", row.names = c(NA,
-33L))
Ответы
Ответ 1
Мы можем использовать порядок "левых" и "присоединенных" и сопоставлять, когда один за другим следует за каждым пользователем.
Для этого я собираюсь использовать library(data.table)
library(data.table)
setDT(df)
## order the data by user and datetime
df <- df[order(user, datetime)]
## add an 'order' column, which is a sequence from 1 to lenght()
## for each user
df[, order := seq(1:.N), by=user]
## split the left and joins
dt_left <- df[state == "left"]
dt_joined <- df[state == "joined"]
## assuming 'left' is after 'joined', shift the 'order' back for left
dt_left[, order := order - 1]
## join user an dorder (and subsetting relevant columns)
## keeping when there a 'joined' but not a 'left'
dt <- dt_left[, .(user, order, datetime)][dt_joined[, .(user, order, datetime)], on=c("user", "order"), nomatch=NA]
## rename columns
setnames(dt, c("datetime", "i.datetime"), c("left", "joined"))
user order left joined
1: User1 1 2016-02-19 19:13:32 2016-02-19 19:13:26
2: User1 3 2016-02-19 19:25:26 2016-02-19 19:21:33
3: User1 5 2016-02-19 19:42:16 2016-02-19 19:35:38
4: User1 7 2016-02-19 19:47:59 2016-02-19 19:44:15
5: User1 9 2016-02-19 19:51:06 2016-02-19 19:48:55
6: User1 11 2016-02-19 20:48:22 2016-02-19 19:52:40
7: User1 13 2016-02-19 21:11:13 2016-02-19 21:06:20
8: User1 15 2016-02-19 21:17:33 2016-02-19 21:11:15
9: User2 1 2016-02-19 19:30:30 2016-02-19 19:21:18
10: User3 1 2016-02-19 20:02:26 2016-02-19 19:53:15
11: User3 3 2016-02-19 20:13:38 2016-02-19 20:02:34
12: User3 5 2016-02-19 20:42:27 2016-02-19 20:13:48
13: User3 7 NA 2016-02-19 20:49:31
14: User3 8 NA 2016-02-19 22:30:30
15: User4 1 2016-02-19 21:10:43 2016-02-19 20:59:58
16: User4 3 2016-02-19 22:02:45 2016-02-19 21:11:22
17: User4 5 2016-02-19 22:05:37 2016-02-19 22:05:18
18: User4 7 NA 2016-02-19 22:05:47
Ответ 2
Используя rowid()
из пакета data.table-package вместе с dcast
:
require(data.table)
dcast(dt, user + rowid(user, state) ~ state, value.var="datetime")
# user user_1 joined left
# 1: User1 1 2016-02-19 19:13:26 2016-02-19 19:13:32
# 2: User1 2 2016-02-19 19:21:33 2016-02-19 19:25:26
# 3: User1 3 2016-02-19 19:35:38 2016-02-19 19:42:16
# 4: User1 4 2016-02-19 19:44:15 2016-02-19 19:47:59
# 5: User1 5 2016-02-19 19:48:55 2016-02-19 19:51:06
# 6: User1 6 2016-02-19 19:52:40 <NA>
# 7: User2 1 2016-02-19 19:21:18 2016-02-19 19:30:30
# 8: User3 1 2016-02-19 19:53:15 2016-02-19 20:02:26
# 9: User3 2 2016-02-19 20:02:34 <NA>
# 10: User3 3 2016-02-19 20:13:48 <NA>
Ответ 3
Базовая версия:
samp$count <- with(samp, ave(as.character(user),list(state,user),FUN=seq_along) )
out <- merge(
samp[samp$state=="joined",c("user","datetime","count")],
samp[samp$state=="left",c("user","datetime","count")],
by=c("user","count"), all.x=TRUE
)
out[order(out$count),]
Ответ 4
Другой способ сделать это:
library(tidyr)
df <- df %>% spread(state, datetime)
df_joined <- df[!is.na(df$joined), 2:3]
df_joined <- df_joined[with(df_joined, order(user, joined)), ]
df_left <- df[!is.na(df$left), c(2, 4)]
df_left <- df_left[with(df_left, order(user, left)), ]
merge(df_joined, df_left, all = TRUE, by = 'user')
Ответ 5
Нам нужен порядковый номер, который определяет порядок даты и времени в каждой группе user + state. Номер последовательности, используемый здесь, в частности, является значимым последовательным счетчиком объединенных [левых] записей в преобразованном кадре данных.
Используя spread
из tidyr
spread(within(samp[,-1],seq<-ave(as.numeric(datetime),user,state,FUN=order)),
state,datetime)
user seq joined left
1 User1 1 2016-02-19 19:13:26 2016-02-19 19:13:32
2 User1 2 2016-02-19 19:21:33 2016-02-19 19:25:26
3 User1 3 2016-02-19 19:35:38 2016-02-19 19:42:16
4 User1 4 2016-02-19 19:44:15 2016-02-19 19:47:59
5 User1 5 2016-02-19 19:48:55 2016-02-19 19:51:06
6 User1 6 2016-02-19 19:52:40 2016-02-19 20:48:22
7 User1 7 2016-02-19 21:06:20 2016-02-19 21:11:13
8 User1 8 2016-02-19 21:11:15 2016-02-19 21:17:33
9 User2 1 2016-02-19 19:21:18 2016-02-19 19:30:30
10 User3 1 2016-02-19 19:53:15 2016-02-19 20:02:26
11 User3 2 2016-02-19 20:02:34 2016-02-19 20:13:38
12 User3 3 2016-02-19 20:13:48 2016-02-19 20:42:27
13 User3 4 2016-02-19 20:49:31 <NA>
14 User3 5 2016-02-19 22:30:30 <NA>
15 User4 1 2016-02-19 20:59:58 2016-02-19 21:10:43
16 User4 2 2016-02-19 21:11:22 2016-02-19 22:02:45
17 User4 3 2016-02-19 22:05:18 2016-02-19 22:05:37
18 User4 4 2016-02-19 22:05:47 <NA>
Это также можно записать с помощью dcast
из reshape2
dcast(within(samp,seq<-ave(as.numeric(datetime),user,state,FUN=order)),
user+seq~state, value.var="datetime")