Как выполнить корреляцию Пирсона выбранных столбцов кадра данных Pandas
У меня есть CSV, который выглядит так:
gene,stem1,stem2,stem3,b1,b2,b3,special_col
foo,20,10,11,23,22,79,3
bar,17,13,505,12,13,88,1
qui,17,13,5,12,13,88,3
И как кадр данных выглядит следующим образом:
In [17]: import pandas as pd
In [20]: df = pd.read_table("http://dpaste.com/3PQV3FA.txt",sep=",")
In [21]: df
Out[21]:
gene stem1 stem2 stem3 b1 b2 b3 special_col
0 foo 20 10 11 23 22 79 3
1 bar 17 13 505 12 13 88 1
2 qui 17 13 5 12 13 88 3
Я хочу сделать, чтобы выполнить корреляцию pearson из последнего столбца (special_col
) с каждым столбцом между столбцом gene
и special column
, т.е. colnames[1:number_of_column-1]
В конце дня у нас будет длина кадра данных.
Coln PearCorr
stem1 0.5
stem2 -0.5
stem3 -0.9999453506011533
b1 0.5
b2 0.5
b3 -0.5
Вышеуказанное значение вычисляется вручную:
In [27]: import scipy.stats
In [39]: scipy.stats.pearsonr([3, 1, 3], [11,505,5])
Out[39]: (-0.9999453506011533, 0.0066556395400007278)
Как я могу это сделать?
Ответы
Ответ 1
Обратите внимание, что в ваших данных есть ошибка, там специальный col - все 3, поэтому корреляция не может быть вычислена.
Если вы удалите выделение столбца в конце, вы получите матрицу корреляции всех остальных столбцов, которые вы анализируете. Последний [: -1] должен удалить корреляцию "special_col" с самим собой.
In [15]: data[data.columns[1:]].corr()['special_col'][:-1]
Out[15]:
stem1 0.500000
stem2 -0.500000
stem3 -0.999945
b1 0.500000
b2 0.500000
b3 -0.500000
Name: special_col, dtype: float64
Если вы заинтересованы в скорости, это немного быстрее на моей машине:
In [33]: np.corrcoef(data[data.columns[1:]].T)[-1][:-1]
Out[33]:
array([ 0.5 , -0.5 , -0.99994535, 0.5 , 0.5 ,
-0.5 ])
In [34]: %timeit np.corrcoef(data[data.columns[1:]].T)[-1][:-1]
1000 loops, best of 3: 437 µs per loop
In [35]: %timeit data[data.columns[1:]].corr()['special_col']
1000 loops, best of 3: 526 µs per loop
Но, очевидно, он возвращает массив, а не pandas series/DF.
Ответ 2
Вы можете apply
в своем диапазоне столбцов с lambda
, который вызывает corr
и передает Series
'special_col'
:
In [126]:
df[df.columns[1:-1]].apply(lambda x: x.corr(df['special_col']))
Out[126]:
stem1 0.500000
stem2 -0.500000
stem3 -0.999945
b1 0.500000
b2 0.500000
b3 -0.500000
dtype: float64
Задержка
На самом деле другой метод быстрее, поэтому я ожидаю, что он будет лучше масштабироваться:
In [130]:
%timeit df[df.columns[1:-1]].apply(lambda x: x.corr(df['special_col']))
%timeit df[df.columns[1:]].corr()['special_col']
1000 loops, best of 3: 1.75 ms per loop
1000 loops, best of 3: 836 µs per loop
Ответ 3
Почему бы просто не сделать:
In [34]: df.corr().iloc[:-1,-1]
Out[34]:
stem1 0.500000
stem2 -0.500000
stem3 -0.999945
b1 0.500000
b2 0.500000
b3 -0.500000
Name: special_col, dtype: float64
или
In [39]: df.corr().ix['special_col', :-1]
Out[39]:
stem1 0.500000
stem2 -0.500000
stem3 -0.999945
b1 0.500000
b2 0.500000
b3 -0.500000
Name: special_col, dtype: float64
Задержка
In [35]: %timeit df.corr().iloc[-1,:-1]
1000 loops, best of 3: 576 us per loop
In [40]: %timeit df.corr().ix['special_col', :-1]
1000 loops, best of 3: 634 us per loop
In [36]: %timeit df[df.columns[1:]].corr()['special_col']
1000 loops, best of 3: 968 us per loop
In [37]: %timeit df[df.columns[1:-1]].apply(lambda x: x.corr(df['special_col']))
100 loops, best of 3: 2.12 ms per loop