Ответ 1
Чтобы удалить минимальное количество интервалов из списка, чтобы оставшиеся интервалы не перекрывались, существует алгоритм O(n*log n)
:
def maximize_nonoverlapping_count(intervals):
# sort by the end-point
L = sorted(intervals, key=lambda (start, end): (end, (end - start)),
reverse=True) # O(n*logn)
iv = build_interval_tree(intervals) # O(n*log n)
result = []
while L: # until there are intervals left to consider
# pop the interval with the smallest end-point, keep it in the result
result.append(L.pop()) # O(1)
# remove intervals that overlap with the popped interval
overlapping_intervals = iv.pop(result[-1]) # O(log n + m)
remove(overlapping_intervals, from_=L)
return result
Он должен дать следующие результаты:
f = maximize_nonoverlapping_count
assert f([[0, 133], [78, 100], [25, 30]]) == [[25, 30], [78, 100]]
assert f([[0,100],[9,10],[12,90]]) == [[9,10], [12, 90]]
assert f([[0, 100], [4, 20], [30, 35], [30, 78]]) == [[4, 20], [30, 35]]
assert f([[30, 70], [25, 40]]) == [[25, 40]]
Требуется структура данных, которая может найти в O(log n + m)
время все интервалы, которые перекрываются с заданным интервалом, например IntervalTree
. Существуют реализации, которые можно использовать с Python, например quicksect.py
, см. Методы быстрого пересечения интервалов для использования примера.
Здесь реализация quicksect
на основе O(n**2)
приведенного выше алгоритма:
from quicksect import IntervalNode
class Interval(object):
def __init__(self, start, end):
self.start = start
self.end = end
self.removed = False
def maximize_nonoverlapping_count(intervals):
intervals = [Interval(start, end) for start, end in intervals]
# sort by the end-point
intervals.sort(key=lambda x: (x.end, (x.end - x.start))) # O(n*log n)
tree = build_interval_tree(intervals) # O(n*log n)
result = []
for smallest in intervals: # O(n) (without the loop body)
# pop the interval with the smallest end-point, keep it in the result
if smallest.removed:
continue # skip removed nodes
smallest.removed = True
result.append([smallest.start, smallest.end]) # O(1)
# remove (mark) intervals that overlap with the popped interval
tree.intersect(smallest.start, smallest.end, # O(log n + m)
lambda x: setattr(x.other, 'removed', True))
return result
def build_interval_tree(intervals):
root = IntervalNode(intervals[0].start, intervals[0].end,
other=intervals[0])
return reduce(lambda tree, x: tree.insert(x.start, x.end, other=x),
intervals[1:], root)
Примечание: временная сложность в худшем случае составляет O(n**2)
для этой реализации, поскольку интервалы отмечены только как удаленные, например, представьте такой ввод intervals
, что len(result) == len(intervals) / 3
, и были интервалы len(intervals) / 2
, которые охватывают весь диапазон tree.intersect()
будет называться n/3
раз, и каждый вызов будет выполнять x.other.removed = True
не менее n/2
раз, т.е. n*n/6
всего операций:
n = 6
intervals = [[0, 100], [0, 100], [0, 100], [0, 10], [10, 20], [15, 40]])
result = [[0, 10], [10, 20]]
Здесь banyan
на основе O(n log n)
реализация:
from banyan import SortedSet, OverlappingIntervalsUpdator # pip install banyan
def maximize_nonoverlapping_count(intervals):
# sort by the end-point O(n log n)
sorted_intervals = SortedSet(intervals,
key=lambda (start, end): (end, (end - start)))
# build "interval" tree O(n log n)
tree = SortedSet(intervals, updator=OverlappingIntervalsUpdator)
result = []
while sorted_intervals: # until there are intervals left to consider
# pop the interval with the smallest end-point, keep it in the result
result.append(sorted_intervals.pop()) # O(log n)
# remove intervals that overlap with the popped interval
overlapping_intervals = tree.overlap(result[-1]) # O(m log n)
tree -= overlapping_intervals # O(m log n)
sorted_intervals -= overlapping_intervals # O(m log n)
return result
Примечание. В этой реализации рассматриваются интервалы [0, 10]
и [10, 20]
, которые должны перекрываться:
f = maximize_nonoverlapping_count
assert f([[0, 100], [0, 10], [11, 20], [15, 40]]) == [[0, 10] ,[11, 20]]
assert f([[0, 100], [0, 10], [10, 20], [15, 40]]) == [[0, 10] ,[15, 40]]
sorted_intervals
и tree
можно объединить:
from banyan import SortedSet, OverlappingIntervalsUpdator # pip install banyan
def maximize_nonoverlapping_count(intervals):
# build "interval" tree sorted by the end-point O(n log n)
tree = SortedSet(intervals, key=lambda (start, end): (end, (end - start)),
updator=OverlappingIntervalsUpdator)
result = []
while tree: # until there are intervals left to consider
# pop the interval with the smallest end-point, keep it in the result
result.append(tree.pop()) # O(log n)
# remove intervals that overlap with the popped interval
overlapping_intervals = tree.overlap(result[-1]) # O(m log n)
tree -= overlapping_intervals # O(m log n)
return result