Площадь пересечения между двумя кругами
Учитывая два круга:
- C1 at (
x1
, y1
) с radius1
- C2 at (
x2
, y2
) с radius2
Как вы вычисляете площадь их пересечения? Разумеется, доступны все стандартные математические функции (sin
, cos
и т.д.).
Ответы
Ответ 1
Хорошо, используя ссылку Wolfram и Misnomer cue, чтобы посмотреть на уравнение 14, я получил следующее решение Java, используя перечисленные переменные I, и расстояние между центрами (которое может быть тривиально выведено из них):
Double r = radius1;
Double R = radius2;
Double d = distance;
if(R < r){
// swap
r = radius2;
R = radius1;
}
Double part1 = r*r*Math.acos((d*d + r*r - R*R)/(2*d*r));
Double part2 = R*R*Math.acos((d*d + R*R - r*r)/(2*d*R));
Double part3 = 0.5*Math.sqrt((-d+r+R)*(d+r-R)*(d-r+R)*(d+r+R));
Double intersectionArea = part1 + part2 - part3;
Ответ 2
Вот функция JavaScript, которая делает именно то, что сделал Крис:
function areaOfIntersection(x0, y0, r0, x1, y1, r1)
{
var rr0 = r0 * r0;
var rr1 = r1 * r1;
var d = Math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
var phi = (Math.acos((rr0 + (d * d) - rr1) / (2 * r0 * d))) * 2;
var theta = (Math.acos((rr1 + (d * d) - rr0) / (2 * r1 * d))) * 2;
var area1 = 0.5 * theta * rr1 - 0.5 * rr1 * Math.sin(theta);
var area2 = 0.5 * phi * rr0 - 0.5 * rr0 * Math.sin(phi);
return area1 + area2;
}
Однако этот метод вернет NaN, если один круг полностью внутри другого, или они вообще не касаются друг друга. Немного другая версия, которая не прерывается в этих условиях, выглядит следующим образом:
function areaOfIntersection(x0, y0, r0, x1, y1, r1)
{
var rr0 = r0 * r0;
var rr1 = r1 * r1;
var d = Math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
// Circles do not overlap
if (d > r1 + r0)
{
return 0;
}
// Circle1 is completely inside circle0
else if (d <= Math.abs(r0 - r1) && r0 >= r1)
{
// Return area of circle1
return Math.PI * rr1;
}
// Circle0 is completely inside circle1
else if (d <= Math.abs(r0 - r1) && r0 < r1)
{
// Return area of circle0
return Math.PI * rr0;
}
// Circles partially overlap
else
{
var phi = (Math.acos((rr0 + (d * d) - rr1) / (2 * r0 * d))) * 2;
var theta = (Math.acos((rr1 + (d * d) - rr0) / (2 * r1 * d))) * 2;
var area1 = 0.5 * theta * rr1 - 0.5 * rr1 * Math.sin(theta);
var area2 = 0.5 * phi * rr0 - 0.5 * rr0 * Math.sin(phi);
// Return area of intersection
return area1 + area2;
}
}
Я написал эту функцию, прочитав информацию, найденную в Math Forum. Я нашел это более ясным, чем объяснение
Ответ 3
Вы можете проверить это аналитическое решение и применить формулу с вашими входными значениями.
Другая формула, приведенная здесь -
Area = r^2*(q - sin(q)) where q = 2*acos(c/2r),
where c = distance between centers and r is the common radius.
Ответ 4
Здесь я делал инструмент генерации персонажей, основанный на пересечениях окружностей... вы можете найти его полезным.
с динамически предоставленными кругами:
C: {
C1: {id: 'C1',x:105,y:357,r:100,color:'red'},
C2: {id: 'C2',x:137,y:281,r:50, color:'lime'},
C3: {id: 'C3',x:212,y:270,r:75, color:'#00BCD4'}
},
Проверьте ПОЛНУЮ скрипку...
FIDDLE