Каким образом данные хранятся в *.npy?

Я сохраняю массивы NumPy, используя функцию numpy.save. Я хочу, чтобы другие разработчики имели возможность читать данные из этих файлов с использованием языка C. Так что мне нужно знать, как numpy организует двоичные данные в файле .OK, это очевидно, когда я сохраняю массив "i4", но как насчет массива массивов, который содержит некоторые структуры? Невозможно найти информацию в документации

UPD: скажем, что данные такие:

dt = np.dtype([('outer','(3,)<i4'),('outer2',[('inner','(10,)<i4'),('inner2','f8')])])

UPD2: как насчет сохранения динамических данных (dtype - object)

import numpy as np
a = [0,0,0]
b = [0,0]
c = [a,b]
dtype = np.dtype([('Name', '|S2'), ('objValue', object)])
data = np.zeros(3, dtype)
data[0]['objValue'] = a
data[1]['objValue'] = b
data[2]['objValue'] = c
data[0]['Name'] = 'a'
data[1]['Name'] = 'b'
data[2]['Name'] = 'c'

np.save(r'D:\in.npy', data)

Действительно ли, чтобы читать эту вещь из C?

Ответы

Ответ 1

Формат файла npy документирован в NEPY NEP 1 - Простой формат файла для массивов NumPy.

Например, код

>>> dt=numpy.dtype([('outer','(3,)<i4'),
...                 ('outer2',[('inner','(10,)<i4'),('inner2','f8')])])
>>> a=numpy.array([((1,2,3),((10,11,12,13,14,15,16,17,18,19),3.14)),
...                ((4,5,6),((-1,-2,-3,-4,-5,-6,-7,-8,-9,-20),6.28))],dt)
>>> numpy.save('1.npy', a)

Результаты в файле:

93 4E 55 4D 50 59                      magic ("\x93NUMPY")
01                                     major version (1)
00                                     minor version (0)

96 00                                  HEADER_LEN (0x0096 = 150)
7B 27 64 65 73 63 72 27 
3A 20 5B 28 27 6F 75 74 
65 72 27 2C 20 27 3C 69 
34 27 2C 20 28 33 2C 29 
29 2C 20 28 27 6F 75 74 
65 72 32 27 2C 20 5B 28 
27 69 6E 6E 65 72 27 2C 
20 27 3C 69 34 27 2C 20 
28 31 30 2C 29 29 2C 20 
28 27 69 6E 6E 65 72 32                Header, describing the data structure
27 2C 20 27 3C 66 38 27                "{'descr': [('outer', '<i4', (3,)),
29 5D 29 5D 2C 20 27 66                            ('outer2', [
6F 72 74 72 61 6E 5F 6F                               ('inner', '<i4', (10,)), 
72 64 65 72 27 3A 20 46                               ('inner2', '<f8')]
61 6C 73 65 2C 20 27 73                            )],
68 61 70 65 27 3A 20 28                  'fortran_order': False,
32 2C 29 2C 20 7D 20 20                  'shape': (2,), }"
20 20 20 20 20 20 20 20 
20 20 20 20 20 0A 

01 00 00 00 02 00 00 00 03 00 00 00    (1,2,3)
0A 00 00 00 0B 00 00 00 0C 00 00 00
0D 00 00 00 0E 00 00 00 0F 00 00 00
10 00 00 00 11 00 00 00 12 00 00 00
13 00 00 00                            (10,11,12,13,14,15,16,17,18,19)
1F 85 EB 51 B8 1E 09 40                3.14

04 00 00 00 05 00 00 00 06 00 00 00    (4,5,6)
FF FF FF FF FE FF FF FF FD FF FF FF
FC FF FF FF FB FF FF FF FA FF FF FF
F9 FF FF FF F8 FF FF FF F7 FF FF FF 
EC FF FF FF                            (-1,-2,-3,-4,-5,-6,-7,-8,-9,-20)
1F 85 EB 51 B8 1E 19 40                6.28

Ответ 2

Формат описан в numpy/lib/format.py, где вы также можете увидеть исходный код Python, используемый для загрузки файлов npy. np.load определяется здесь.