Ответ 1
Networkx имеет достойные объекты для составления разведочных данных анализ, это не инструмент, чтобы сделать показатели качества публикации, по разным причинам, что я не хочу вдаваться сюда. Я отсюда переписал эту часть базы кода с нуля и сделал автономный модуль рисования, называемый netgraph, который можно найти здесь (например, оригинал, основанный только на matplotlib). API очень, очень похоже и хорошо документирован, поэтому не должно быть слишком трудно формовать в ваших целях.
Основываясь на этом, я получаю следующий результат:
Я выбрал цвет, чтобы обозначить силу края, как вы можете
1) указать отрицательные значения, и
2) лучше отличить небольшие значения.
Однако вы также можете передать ширину ребра в netgraph (см. netgraph.draw_edges()
).
Разный порядок ветвей является результатом вашей структуры данных (a dict), которая не указывает на неотъемлемый порядок. Вам нужно будет изменить структуру данных и функцию _parse_input()
ниже, чтобы исправить эту проблему.
код:
import itertools
import numpy as np
import matplotlib.pyplot as plt
import netgraph; reload(netgraph)
def plot_layered_network(weight_matrices,
distance_between_layers=2,
distance_between_nodes=1,
layer_labels=None,
**kwargs):
"""
Convenience function to plot layered network.
Arguments:
----------
weight_matrices: [w1, w2, ..., wn]
list of weight matrices defining the connectivity between layers;
each weight matrix is a 2-D ndarray with rows indexing source and columns indexing targets;
the number of sources has to match the number of targets in the last layer
distance_between_layers: int
distance_between_nodes: int
layer_labels: [str1, str2, ..., strn+1]
labels of layers
**kwargs: passed to netgraph.draw()
Returns:
--------
ax: matplotlib axis instance
"""
nodes_per_layer = _get_nodes_per_layer(weight_matrices)
node_positions = _get_node_positions(nodes_per_layer,
distance_between_layers,
distance_between_nodes)
w = _combine_weight_matrices(weight_matrices, nodes_per_layer)
ax = netgraph.draw(w, node_positions, **kwargs)
if not layer_labels is None:
ax.set_xticks(distance_between_layers*np.arange(len(weight_matrices)+1))
ax.set_xticklabels(layer_labels)
ax.xaxis.set_ticks_position('bottom')
return ax
def _get_nodes_per_layer(weight_matrices):
nodes_per_layer = []
for w in weight_matrices:
sources, targets = w.shape
nodes_per_layer.append(sources)
nodes_per_layer.append(targets)
return nodes_per_layer
def _get_node_positions(nodes_per_layer,
distance_between_layers,
distance_between_nodes):
x = []
y = []
for ii, n in enumerate(nodes_per_layer):
x.append(distance_between_nodes * np.arange(0., n))
y.append(ii * distance_between_layers * np.ones((n)))
x = np.concatenate(x)
y = np.concatenate(y)
return np.c_[y,x]
def _combine_weight_matrices(weight_matrices, nodes_per_layer):
total_nodes = np.sum(nodes_per_layer)
w = np.full((total_nodes, total_nodes), np.nan, np.float)
a = 0
b = nodes_per_layer[0]
for ii, ww in enumerate(weight_matrices):
w[a:a+ww.shape[0], b:b+ww.shape[1]] = ww
a += nodes_per_layer[ii]
b += nodes_per_layer[ii+1]
return w
def test():
w1 = np.random.rand(4,5) #< 0.50
w2 = np.random.rand(5,6) #< 0.25
w3 = np.random.rand(6,3) #< 0.75
import string
node_labels = dict(zip(range(18), list(string.ascii_lowercase)))
fig, ax = plt.subplots(1,1)
plot_layered_network([w1,w2,w3],
layer_labels=['start', 'step 1', 'step 2', 'finish'],
ax=ax,
node_size=20,
node_edge_width=2,
node_labels=node_labels,
edge_width=5,
)
plt.show()
return
def test_example(input_dict):
weight_matrices, node_labels = _parse_input(input_dict)
fig, ax = plt.subplots(1,1)
plot_layered_network(weight_matrices,
layer_labels=['', '1', '2', '3', '4'],
distance_between_layers=10,
distance_between_nodes=8,
ax=ax,
node_size=300,
node_edge_width=10,
node_labels=node_labels,
edge_width=50,
)
plt.show()
return
def _parse_input(input_dict):
weight_matrices = []
node_labels = []
# initialise sources
sources = set()
for v in input_dict[1].values():
for s in v.keys():
sources.add(s)
sources = list(sources)
for ii in range(len(input_dict)):
inner_dict = input_dict[ii+1]
targets = inner_dict.keys()
w = np.full((len(sources), len(targets)), np.nan, np.float)
for ii, s in enumerate(sources):
for jj, t in enumerate(targets):
try:
w[ii,jj] = inner_dict[t][s]
except KeyError:
pass
weight_matrices.append(w)
node_labels.append(sources)
sources = targets
node_labels.append(targets)
node_labels = list(itertools.chain.from_iterable(node_labels))
node_labels = dict(enumerate(node_labels))
return weight_matrices, node_labels
# --------------------------------------------------------------------------------
# script
# --------------------------------------------------------------------------------
if __name__ == "__main__":
# test()
input_dict = {
1: {
"Group 1":{"sample_0":0.5, "sample_1":0.5, "sample_2":0, "sample_3":0, "sample_4":0},
"Group 2":{"sample_0":0, "sample_1":0, "sample_2":1, "sample_3":0, "sample_4":0},
"Group 3":{"sample_0":0, "sample_1":0, "sample_2":0, "sample_3":0.5, "sample_4":0.5}
},
2: {
"Group 1":{"Group 1":1, "Group 2":0, "Group 3":0},
"Group 2":{"Group 1":0, "Group 2":1, "Group 3":0},
"Group 3":{"Group 1":0, "Group 2":0, "Group 3":1}
},
3: {
"Group 1":{"Group 1":0.25, "Group 2":0, "Group 3":0.75},
"Group 2":{"Group 1":0.25, "Group 2":0.75, "Group 3":0}
},
4: {
"Group 1":{"Group 1":1, "Group 2":0},
"Group 2":{"Group 1":0.25, "Group 2":0.75}
}
}
test_example(input_dict)
pass