Data.table row-wise sum, mean, min, max like dplyr?
Другие сообщения о операторах row-wise на datatable. Они либо слишком простые, либо решают специфический сценарий
Мой вопрос здесь более общий. Существует решение, использующее dplyr. Я играл, но не смог найти эквивалентное решение, используя синтаксис data.table. Не могли бы вы предложить элегантное решение data.table, которое воспроизводит те же результаты, что и версия dplyr?
РЕДАКТИРОВАТЬ 1. Сводка критериев предлагаемых решений по реальному набору данных (10 МБ, 73000 строк, статистика, сделанная на 24 числовых столбцах). Результаты тестов являются субъективными. Однако прошедшее время постоянно воспроизводимо.
| Solution By | Speed compared to dplyr |
|-------------|-----------------------------|
| Metrics v1 | 4.3 times SLOWER (use .SD) |
| Metrics v2 | 5.6 times FASTER |
| ExperimenteR| 15 times FASTER |
| Arun v1 | 3 times FASTER (Map func)|
| Arun v2 | 3 times FASTER (foo func)|
| Ista | 4.5 times FASTER |
РЕДАКТИРОВАТЬ 2: после дня я добавил столбец NACount. Вот почему этот столбец не найден в решениях, предлагаемых различными участниками.
Настройка данных
library(data.table)
dt <- data.table(ProductName = c("Lettuce", "Beetroot", "Spinach", "Kale", "Carrot"),
Country = c("CA", "FR", "FR", "CA", "CA"),
Q1 = c(NA, 61, 40, 54, NA), Q2 = c(22, 8, NA, 5, NA),
Q3 = c(51, NA, NA, 16, NA), Q4 = c(79, 10, 49, NA, NA))
# ProductName Country Q1 Q2 Q3 Q4
# 1: Lettuce CA NA 22 51 79
# 2: Beetroot FR 61 8 NA 10
# 3: Spinach FR 40 NA NA 49
# 4: Kale CA 54 5 16 NA
# 5: Carrot CA NA NA NA NA
РЕШЕНИЕ с использованием dplyr + rowwise()
library(dplyr) ; library(magrittr)
dt %>% rowwise() %>%
transmute(ProductName, Country, Q1, Q2, Q3, Q4,
AVG = mean(c(Q1, Q2, Q3, Q4), na.rm=TRUE),
MIN = min (c(Q1, Q2, Q3, Q4), na.rm=TRUE),
MAX = max (c(Q1, Q2, Q3, Q4), na.rm=TRUE),
SUM = sum (c(Q1, Q2, Q3, Q4), na.rm=TRUE),
NAcnt= sum(is.na(c(Q1, Q2, Q3, Q4))))
# ProductName Country Q1 Q2 Q3 Q4 AVG MIN MAX SUM NAcnt
# 1 Lettuce CA NA 22 51 79 50.66667 22 79 152 1
# 2 Beetroot FR 61 8 NA 10 26.33333 8 61 79 1
# 3 Spinach FR 40 NA NA 49 44.50000 40 49 89 2
# 4 Kale CA 54 5 16 NA 25.00000 5 54 75 1
# 5 Carrot CA NA NA NA NA NaN Inf -Inf 0 4
ОШИБКА с data.table(вычислить весь столбец вместо строки)
dt[, .(ProductName, Country, Q1, Q2, Q3, Q4,
AVG = mean(c(Q1, Q2, Q3, Q4), na.rm=TRUE),
MIN = min (c(Q1, Q2, Q3, Q4), na.rm=TRUE),
MAX = max (c(Q1, Q2, Q3, Q4), na.rm=TRUE),
SUM = sum (c(Q1, Q2, Q3, Q4), na.rm=TRUE),
NAcnt= sum(is.na(c(Q1, Q2, Q3, Q4))))]
# ProductName Country Q1 Q2 Q3 Q4 AVG MIN MAX SUM NAcnt
# 1: Lettuce CA NA 22 51 79 35.90909 5 79 395 9
# 2: Beetroot FR 61 8 NA 10 35.90909 5 79 395 9
# 3: Spinach FR 40 NA NA 49 35.90909 5 79 395 9
# 4: Kale CA 54 5 16 NA 35.90909 5 79 395 9
# 5: Carrot CA NA NA NA NA 35.90909 5 79 395 9
ALMOST, но более сложные и отсутствующие столбцы вывода Q1, Q2, Q3, Q4
dtmelt <- reshape2::melt(dt, id=c("ProductName", "Country"),
variable.name="Quarter", value.name="Qty")
dtmelt[, .(AVG = mean(Qty, na.rm=TRUE),
MIN = min (Qty, na.rm=TRUE),
MAX = max (Qty, na.rm=TRUE),
SUM = sum (Qty, na.rm=TRUE),
NAcnt= sum(is.na(Qty))), by = list(ProductName, Country)]
# ProductName Country AVG MIN MAX SUM NAcnt
# 1: Lettuce CA 50.66667 22 79 152 1
# 2: Beetroot FR 26.33333 8 61 79 1
# 3: Spinach FR 44.50000 40 49 89 2
# 4: Kale CA 25.00000 5 54 75 1
# 5: Carrot CA NaN Inf -Inf 0 4
Ответы
Ответ 1
Вы можете использовать эффективные функции по строкам из пакета matrixStats
.
library(matrixStats)
dt[, `:=`(MIN = rowMins(as.matrix(.SD), na.rm=T),
MAX = rowMaxs(as.matrix(.SD), na.rm=T),
AVG = rowMeans(.SD, na.rm=T),
SUM = rowSums(.SD, na.rm=T)), .SDcols=c(Q1, Q2,Q3,Q4)]
dt
# ProductName Country Q1 Q2 Q3 Q4 MIN MAX AVG SUM
# 1: Lettuce CA NA 22 51 79 22 79 50.66667 152
# 2: Beetroot FR 61 8 NA 10 8 61 26.33333 79
# 3: Spinach FR 40 NA 79 49 40 79 56.00000 168
# 4: Kale CA 54 5 16 NA 5 54 25.00000 75
# 5: Carrot CA NA NA NA NA Inf -Inf NaN 0
Для набора данных с 500000 строк (с помощью data.table
из CRAN)
dt <- rbindlist(lapply(1:100000, function(i)dt))
system.time(dt[, `:=`(MIN = rowMins(as.matrix(.SD), na.rm=T),
MAX = rowMaxs(as.matrix(.SD), na.rm=T),
AVG = rowMeans(.SD, na.rm=T),
SUM = rowSums(.SD, na.rm=T)), .SDcols=c("Q1", "Q2","Q3","Q4")])
# user system elapsed
# 0.089 0.004 0.093
rowwise
(или by=1:nrow(dt)
) является "эвфемизмом" для for loop
, примером которого является
library(dplyr) ; library(magrittr)
system.time(dt %>% rowwise() %>%
transmute(ProductName, Country, Q1, Q2, Q3, Q4,
MIN = min (c(Q1, Q2, Q3, Q4), na.rm=TRUE),
MAX = max (c(Q1, Q2, Q3, Q4), na.rm=TRUE),
AVG = mean(c(Q1, Q2, Q3, Q4), na.rm=TRUE),
SUM = sum (c(Q1, Q2, Q3, Q4), na.rm=TRUE)))
# user system elapsed
# 80.832 0.111 80.974
system.time(dt[, `:=`(AVG= mean(as.numeric(.SD),na.rm=TRUE),MIN = min(.SD, na.rm=TRUE),MAX = max(.SD, na.rm=TRUE),SUM = sum(.SD, na.rm=TRUE)),.SDcols=c("Q1", "Q2","Q3","Q4"),by=1:nrow(dt)] )
# user system elapsed
# 141.492 0.196 141.757
Ответ 2
С помощью by=1:nrow(dt)
выполняется операция обхода в data.table
library(data.table)
dt[, `:=`(AVG= mean(as.numeric(.SD),na.rm=TRUE),MIN = min(.SD, na.rm=TRUE),MAX = max(.SD, na.rm=TRUE),SUM = sum(.SD, na.rm=TRUE)),.SDcols=c(Q1, Q2,Q3,Q4),by=1:nrow(dt)]
ProductName Country Q1 Q2 Q3 Q4 AVG MIN MAX SUM
1: Lettuce CA NA 22 51 79 50.66667 22 79 152
2: Beetroot FR 61 8 NA 10 26.33333 8 61 79
3: Spinach FR 40 NA 79 49 56.00000 40 79 168
4: Kale CA 54 5 16 NA 25.00000 5 54 75
5: Carrot CA NA NA NA NA NaN Inf -Inf 0
Warning messages:
1: In min(c(NA_real_, NA_real_, NA_real_, NA_real_), na.rm = TRUE) :
no non-missing arguments to min; returning Inf
2: In max(c(NA_real_, NA_real_, NA_real_, NA_real_), na.rm = TRUE) :
no non-missing arguments to max; returning -Inf
У вас есть предупреждающие сообщения, потому что в строке 5 вы вычисляете max, sum, min и max ничего. Например, см. Ниже:
min(c(NA,NA,NA,NA),na.rm=TRUE)
[1] Inf
Warning message:
In min(c(NA, NA, NA, NA), na.rm = TRUE) :
no non-missing arguments to min; returning Inf
Ответ 3
Еще один способ (не так эффективен, хотя, как na.omit()
вызывается каждый раз, а также много распределений памяти):
require(data.table)
new_cols = c("MIN", "MAX", "SUM", "AVG")
dt[, (new_cols) := Map(function(x, f) f(x),
list(na.omit(c(Q1,Q2,Q3,Q4))),
list(min, max, sum, mean)),
by = 1:nrow(dt)]
# ProductName Country Q1 Q2 Q3 Q4 MIN MAX SUM AVG
# 1: Lettuce CA NA 22 51 79 22 79 152 50.66667
# 2: Beetroot FR 61 8 NA 10 8 61 79 26.33333
# 3: Spinach FR 40 NA 79 49 40 79 168 56.00000
# 4: Kale CA 54 5 16 NA 5 54 75 25.00000
# 5: Carrot CA NA NA NA NA Inf -Inf 0 NaN
Но, как я уже упоминал, это будет намного проще после реализации colwise()
и rowwise()
. Синтаксис в этом случае может выглядеть примерно так:
dt[, rowwise(.SD, list(MIN=min, MAX=max, SUM=sum, AVG=mean), na.rm=TRUE), by = 1:nrow(dt)]
# `by = ` is really not necessary in this case.
или даже более простой для этого случая:
rowwise(dt, list(...), na.rm=TRUE)
Edit:
Другая вариация:
myNACount <- function(x, ...) length(attributes(x)$na.action)
foo <- function(x, ...) {
funs = c(min, max, mean, sum, myNACount)
lapply(funs, function(f) f(x, ...))
}
dt[, (new_cols) := foo(na.omit(c(Q1, Q2, Q3, Q4)), na.rm=TRUE), by=1:nrow(dt)]
# ProductName Country Q1 Q2 Q3 Q4 MIN MAX SUM AVG NAs
# 1: Lettuce CA NA 22 51 79 22 79 50.66667 152 1
# 2: Beetroot FR 61 8 NA 10 8 61 26.33333 79 1
# 3: Spinach FR 40 NA NA 49 40 49 44.50000 89 2
# 4: Kale CA 54 5 16 NA 5 54 25.00000 75 1
# 5: Carrot CA NA NA NA NA Inf -Inf NaN 0 4
Ответ 4
Функция apply
может использоваться для выполнения вычислений по строкам. Определение функции по отдельности сохраняет чистоту:
dstats <- function(x){
c(mean(x,na.rm=TRUE),
min(x, na.rm=TRUE),
max(x, na.rm=TRUE),
sum(x, na.rm=TRUE))
}
Теперь функция может быть применена к строкам таблицы данных.
(dt[,
c("AVG", "MIN", "MAX", "SUM") := data.frame(t(apply(.SD, 1, dstats))),
.SDcols=c("Q1", "Q2","Q3","Q4"),
with = FALSE])
Обратите внимание, что единственным преимуществом этого при использовании [.data.table
является то, что он позволяет использовать :=
для быстрого добавления по ссылке.
Это медленнее, но более гибко, чем решение matrixStats
, и быстрее, чем решение dplyr
от @ExperimenteR, синхронизируется через 36 секунд (мои тайминги для других методов были аналогичны тем, что были в ответе @ExperimenteR).