Как умножить скаляр на конкретный столбец в массиве NumPy?

Мне нужно сделать некоторый анализ на большом наборе данных из полевой работы гидрогеологии. Я использую NumPy. Я хочу знать, как могу:

  • умножить, например. второй столбец моего массива числом (например, 5.2). И затем

  • вычислить суммарную сумму чисел в этом столбце.

Как я уже говорил, я хочу работать только с определенным столбцом, а не с целым массивом.

Ответы

Ответ 1

 you can do this in two simple steps using NumPy:

>>> # multiply column 2 of the 2D array, A, by 5.2
>>> A[:,1] *= 5.2

>>> # assuming by 'cumulative sum' you meant the 'reduced' sum:
>>> A[:,1].sum()

>>> # if in fact you want the cumulative sum (ie, returns a new column)
>>> # then do this for the second step instead:
>>> NP.cumsum(A[:,1])

с некоторыми издеваемыми данными:

>>> A = NP.random.rand(8, 5)
>>> A
  array([[ 0.893,  0.824,  0.438,  0.284,  0.892],
         [ 0.534,  0.11 ,  0.409,  0.555,  0.96 ],
         [ 0.671,  0.817,  0.636,  0.522,  0.867],
         [ 0.752,  0.688,  0.142,  0.793,  0.716],
         [ 0.276,  0.818,  0.904,  0.767,  0.443],
         [ 0.57 ,  0.159,  0.144,  0.439,  0.747],
         [ 0.705,  0.793,  0.575,  0.507,  0.956],
         [ 0.322,  0.713,  0.963,  0.037,  0.509]])

>>> A[:,1] *= 5.2

>>> A
  array([[ 0.893,  4.287,  0.438,  0.284,  0.892],
         [ 0.534,  0.571,  0.409,  0.555,  0.96 ],
         [ 0.671,  4.25 ,  0.636,  0.522,  0.867],
         [ 0.752,  3.576,  0.142,  0.793,  0.716],
         [ 0.276,  4.255,  0.904,  0.767,  0.443],
         [ 0.57 ,  0.827,  0.144,  0.439,  0.747],
         [ 0.705,  4.122,  0.575,  0.507,  0.956],
         [ 0.322,  3.71 ,  0.963,  0.037,  0.509]])

>>> A[:,1].sum()
  25.596156138451427

требуется несколько простых правил для выбора (индексации) grok-элементов в NumPy:

  • NumPy, как и Python, основан на 0, поэтому, например, "1" ниже относится ко второму столбцу

  • запятые разделяют размеры внутри скобок, поэтому [строки, столбцы], например, A [2,3] означает элемент ( "ячейка" ) в третьей строке, столбец четыре

  • двоеточие означает все элементы этого измерения, например A [:, 1] создает представление столбца A; A [3,:] относится к четвертой строке

Ответ 2

Конечно:

import numpy as np
# Let a be some 2d array; here we just use dummy data 
# to illustrate the method
a = np.ones((10,5))
# Multiply just the 2nd column by 5.2 in-place
a[:,1] *= 5.2

# Now get the cumulative sum of just that column
csum = np.cumsum(a[:,1])

Если вы не хотите делать это на месте, вам понадобится немного другая стратегия:

b = 5.2*a[:,1]
csum = np.cumsum(b)