Побитовый целочисленный алгоритм корня куба
Вот простой способ вычисления целочисленного квадратного корня:
int isqrt(int num)
{
int root=0;
int b = 0x8000;
int a=0, c=0;
while (b) {
c = a|b;
if (c*c <= num)
a |= b;
b >>= 1;
}
}
Ingeniously (спасибо Wikipedia), это можно оптимизировать следующим образом:
int sqrt(short num)
{
int op = num;
int res = 0;
int one = 1 << 30;
while (one > op)
one >>= 2;
while (one != 0) {
if (op >= res + one) {
op -= res + one;
res = (res >> 1) + one;
}
else
res >>= 1;
one >>= 2;
}
return res;
}
Мой вопрос: Можно ли написать аналогично оптимизированный алгоритм для целочисленного кубического корня? (Это должно выполняться на небольшом микроконтроллере, который предпочитает не делать умножения)
Ответы
Ответ 1
В соответствии с этим вопросом SO и ответом, помеченным, из книги Hacker Delight вы можете найти эту реализацию:
int icbrt2(unsigned x) {
int s;
unsigned y, b, y2;
y2 = 0;
y = 0;
for (s = 30; s >= 0; s = s - 3) {
y2 = 4*y2;
y = 2*y;
b = (3*(y2 + y) + 1) << s;
if (x >= b) {
x = x - b;
y2 = y2 + 2*y + 1;
y = y + 1;
}
}
return y;
}
Ответ 2
Да, алгоритм может быть расширен до корня куба, даже без умножений.
Смотрите этот код: http://www.hackersdelight.org/HDcode/icbrt.c.txt
И подумайте о покупке книги Hackers Delight, откуда он приходит. Если вам приходится решать такие проблемы чаще, чем раз в год, вы обязательно должны это прочитать!
Ответ 3
Это (экстремальная) оптимизированная версия кода Hacker Delight, оптимизированная на С#, как упоминалось другими.
Для справки (на моем компьютере): Math.Sqrt занимает около 35 нс, cbrt < 15 нс.
Используются умножения по малым числам, но их легко заменить на сдвиги и
добавляет. Например, наибольшее значение multipication (последняя строка):
"12 * z" == > "(z < 3) + (z < 2)"
Трудно судить, допустим ли размер кода для небольшого микроконтроллера.
Первый шаг: бинарный поиск, операторы if, большие значения ( >= 1u < 24) найдены относительно быстрее, при выполнении поиска обрабатываются небольшие значения (< 64).
Второй шаг: прыжок в развернутый цикл, "метки".
private static uint cbrt(uint x)
{
uint y = 2, z = 4, b = 0;
if (x < 1u << 24)
if (x < 1u << 12)
if (x < 1u << 06)
if (x < 1u << 03)
return x == 0u ? 0u : 1u;
else
return x < 27u ? 2u : 3u;
else
if (x < 1u << 09) goto L8; else goto L7;
else
if (x < 1u << 18)
if (x < 1u << 15) goto L6; else goto L5;
else
if (x < 1u << 21) goto L4; else goto L3;
else
if (x >= 1u << 30) goto L0;
else
if (x < 1u << 27) goto L2; else goto L1;
L0: x -= 1u << 30; if (x >= 19u << 27)
{ x -= 19u << 27; z = 9; y = 3; } goto M0;
L1: x -= 1u << 27; if (x >= 19u << 24)
{ x -= 19u << 24; z = 9; y = 3; } goto M1;
L2: x -= 1u << 24; if (x >= 19u << 21)
{ x -= 19u << 21; z = 9; y = 3; } goto M2;
L3: x -= 1u << 21; if (x >= 19u << 18)
{ x -= 19u << 18; z = 9; y = 3; } goto M3;
L4: x -= 1u << 18; if (x >= 19u << 15)
{ x -= 19u << 15; z = 9; y = 3; } goto M4;
L5: x -= 1u << 15; if (x >= 19u << 12)
{ x -= 19u << 12; z = 9; y = 3; } goto M5;
L6: x -= 1u << 12; if (x >= 19u << 09)
{ x -= 19u << 09; z = 9; y = 3; } goto M6;
L7: x -= 1u << 09; if (x >= 19u << 06)
{ x -= 19u << 06; z = 9; y = 3; } goto M7;
L8: x -= 1u << 06; if (x >= 19u << 03)
{ x -= 19u << 03; z = 9; y = 3; } goto M8;
M0: y *= 2; z *= 4; b = 3 * y + 3 * z + 1 << 24;
if (x >= b) { x -= b; z += 2 * y + 1; y += 1; }
M1: y *= 2; z *= 4; b = 3 * y + 3 * z + 1 << 21;
if (x >= b) { x -= b; z += 2 * y + 1; y += 1; }
M2: y *= 2; z *= 4; b = 3 * y + 3 * z + 1 << 18;
if (x >= b) { x -= b; z += 2 * y + 1; y += 1; }
M3: y *= 2; z *= 4; b = 3 * y + 3 * z + 1 << 15;
if (x >= b) { x -= b; z += 2 * y + 1; y += 1; }
M4: y *= 2; z *= 4; b = 3 * y + 3 * z + 1 << 12;
if (x >= b) { x -= b; z += 2 * y + 1; y += 1; }
M5: y *= 2; z *= 4; b = 3 * y + 3 * z + 1 << 09;
if (x >= b) { x -= b; z += 2 * y + 1; y += 1; }
M6: y *= 2; z *= 4; b = 3 * y + 3 * z + 1 << 06;
if (x >= b) { x -= b; z += 2 * y + 1; y += 1; }
M7: y *= 2; z *= 4; b = 3 * y + 3 * z + 1 << 03;
if (x >= b) { x -= b; z += 2 * y + 1; y += 1; }
M8: y *= 2; return x <= 3 * y + 12 * z ? y : y + 1;
}