TensorFlow ValueError: невозможно передать значение формы (64, 64, 3) для Tensor u'Placeholder: 0 ', которая имеет форму' (?, 64, 64, 3) '

Я новичок в TensorFlow и машинах. Я пытаюсь классифицировать два объекта чашкой и pendrive (jpeg-изображения). Я успешно подготовил и экспортировал model.ckpt. Теперь я пытаюсь восстановить сохраненный model.ckpt для предсказания. Вот script:

import tensorflow as tf
import math
import numpy as np
from PIL import Image
from numpy import array


# image parameters
IMAGE_SIZE = 64
IMAGE_CHANNELS = 3
NUM_CLASSES = 2

def main():
    image = np.zeros((64, 64, 3))
    img = Image.open('./IMG_0849.JPG')

    img = img.resize((64, 64))
    image = array(img).reshape(64,64,3)

    k = int(math.ceil(IMAGE_SIZE / 2.0 / 2.0 / 2.0 / 2.0)) 
    # Store weights for our convolution and fully-connected layers
    with tf.name_scope('weights'):
        weights = {
            # 5x5 conv, 3 input channel, 32 outputs each
            'wc1': tf.Variable(tf.random_normal([5, 5, 1 * IMAGE_CHANNELS, 32])),
            # 5x5 conv, 32 inputs, 64 outputs
            'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
            # 5x5 conv, 64 inputs, 128 outputs
            'wc3': tf.Variable(tf.random_normal([5, 5, 64, 128])),
            # 5x5 conv, 128 inputs, 256 outputs
            'wc4': tf.Variable(tf.random_normal([5, 5, 128, 256])),
            # fully connected, k * k * 256 inputs, 1024 outputs
            'wd1': tf.Variable(tf.random_normal([k * k * 256, 1024])),
            # 1024 inputs, 2 class labels (prediction)
            'out': tf.Variable(tf.random_normal([1024, NUM_CLASSES]))
        }

    # Store biases for our convolution and fully-connected layers
    with tf.name_scope('biases'):
        biases = {
            'bc1': tf.Variable(tf.random_normal([32])),
            'bc2': tf.Variable(tf.random_normal([64])),
            'bc3': tf.Variable(tf.random_normal([128])),
            'bc4': tf.Variable(tf.random_normal([256])),
            'bd1': tf.Variable(tf.random_normal([1024])),
            'out': tf.Variable(tf.random_normal([NUM_CLASSES]))
        }

   saver = tf.train.Saver()
   with tf.Session() as sess:
       saver.restore(sess, "./model.ckpt")
       print "...Model Loaded..."   
       x_ = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE , IMAGE_SIZE , IMAGE_CHANNELS])
       y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
       keep_prob = tf.placeholder(tf.float32)

       init = tf.initialize_all_variables()

       sess.run(init)
       my_classification = sess.run(tf.argmax(y_, 1), feed_dict={x_:image})
       print 'Neural Network predicted', my_classification[0], "for your image"


if __name__ == '__main__':
     main()

Когда я запускаю предыдущий script для предсказания, я получаю следующую ошибку:

ValueError: Cannot feed value of shape (64, 64, 3) for Tensor u'Placeholder:0', which has shape '(?, 64, 64, 3)' 

Что я делаю неправильно? И как я могу исправить форму массива numpy?

Ответы

Ответ 1

image имеет форму (64,64,3).

Ваш заполнитель _x имеет форму (?, 64,64,3).

Проблема заключается в том, что вы загружаете заполнитель в значение другой формы.

Вы должны подать его со значением (1, 64, 64, 3)= пакет из 1 изображения.

Просто измените значение image на пакет с размером.

image = array(img).reshape(1, 64,64,3)

P.S: тот факт, что входной заполнитель принимает партию изображений, означает, что вы можете запускать предикаты для партии изображений параллельно. Вы можете попробовать прочитать более 1 изображения (N изображений), а не создавать партию N-изображения, используя тензор с формой (N, 64,64,3)