Pandas суммировать по столбцам и делить каждую ячейку от этого значения

Я прочитал файл csv и повернул его, чтобы перейти к следующей структуре.

pivoted = df.pivot('user_id', 'group', 'value')
lookup = df.drop_duplicates('user_id')[['user_id', 'group']]
lookup.set_index(['user_id'], inplace=True)
result = pivoted.join(lookup)
result = result.fillna(0) 

Раздел результата:

             0     1     2    3     4    5   6  7    8   9  10  11  12  13  group
user_id                                                                      
2        33653  2325   916  720   867  187  31  0    6   3  42  56  92  15    l-1
4        18895   414  1116  570  1190   55  92  0  122  23  78   6   4   2    l-2 
16        1383    70    27   17    17    1   0  0    0   0   1   0   0   0    l-2
50         396    72    34    5    18    0   0  0    0   0   0   0   0   0    l-3
51        3915  1170   402  832  2791  316  12  5  118  51  32   9  62  27    l-4

Я хочу суммировать столбец 0 с столбцом 13 по каждой строке и делить каждую ячейку на сумму этой строки. Я все еще привык к pandas. Если я правильно понимаю, мы должны стараться избегать циклов при выполнении подобных действий? Итак, как я могу сделать этот способ pandas?

Ответы

Ответ 1

Попробуйте следующее:

In [1]: import pandas as pd

In [2]: df = pd.read_csv("test.csv")

In [3]: df
Out[3]: 
  id  value1  value2  value3
0  A       1       2       3
1  B       4       5       6
2  C       7       8       9

In [4]: df["sum"] = df.sum(axis=1)

In [5]: df
Out[5]: 
  id  value1  value2  value3  sum
0  A       1       2       3    6
1  B       4       5       6   15
2  C       7       8       9   24

In [6]: df_new = df.loc[:,"value1":"value3"].div(df["sum"], axis=0)

In [7]: df_new
Out[7]: 
     value1    value2  value3
0  0.166667  0.333333   0.500
1  0.266667  0.333333   0.400
2  0.291667  0.333333   0.375

Или вы можете сделать следующее:

In [8]: df.loc[:,"value1":"value3"] = df.loc[:,"value1":"value3"].div(df["sum"], axis=0)

In [9]: df
Out[9]: 
  id    value1    value2  value3  sum
0  A  0.166667  0.333333   0.500    6
1  B  0.266667  0.333333   0.400   15
2  C  0.291667  0.333333   0.375   24

Или прямо с самого начала:

In [10]: df = pd.read_csv("test.csv")

In [11]: df
Out[11]: 
  id  value1  value2  value3
0  A       1       2       3
1  B       4       5       6
2  C       7       8       9

In [12]: df.loc[:,"value1":"value3"] = df.loc[:,"value1":"value3"].div(df.sum(axis=1), axis=0)

In [13]: df
Out[13]: 
  id    value1    value2  value3
0  A  0.166667  0.333333   0.500
1  B  0.266667  0.333333   0.400
2  C  0.291667  0.333333   0.375

Изменение столбца value1 и т.п. на ваши заголовки должно работать аналогичным образом.

Ответ 2

Проще говоря:

result.div(result.sum(axis=1), axis=0)

(Отредактировано для использования выделения кода)

Ответ 3

легче работать на столбец:

df = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]])
(df.T / df.T.sum()).T

результат:

         0         1      2
0  0.166667  0.333333  0.500
1  0.266667  0.333333  0.400
2  0.291667  0.333333  0.375

Ответ 4

Мне казалось, что это работает отлично:

In [39]:

cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
result[cols]  = result[cols].apply(lambda row: row / row.sum(axis=1), axis=1)
result

Out[39]:
                0         1         2         3         4         5         6  \
user_id                                                                         
2        0.864827  0.059749  0.023540  0.018503  0.022280  0.004806  0.000797   
4        0.837285  0.018345  0.049453  0.025258  0.052732  0.002437  0.004077   
16       0.912269  0.046174  0.017810  0.011214  0.011214  0.000660  0.000000   
50       0.754286  0.137143  0.064762  0.009524  0.034286  0.000000  0.000000   
51       0.401868  0.120099  0.041265  0.085403  0.286491  0.032437  0.001232   

                7         8         9        10        11        12        13  \
user_id                                                                         
2        0.000000  0.000154  0.000077  0.001079  0.001439  0.002364  0.000385   
4        0.000000  0.005406  0.001019  0.003456  0.000266  0.000177  0.000089   
16       0.000000  0.000000  0.000000  0.000660  0.000000  0.000000  0.000000   
50       0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   
51       0.000513  0.012113  0.005235  0.003285  0.000924  0.006364  0.002772   

        group  
user_id        
2         l-1  
4         l-2  
16        l-2  
50        l-3  
51        l-4  

ОК поцарапать выше, следующее будет намного быстрее:

result[cols]  = result[cols].div(result[cols].sum(axis=1), axis=0)

И только чтобы доказать, что результат тот же:

In [47]:

cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
np.alltrue(result[cols].div(result[cols].sum(axis=1), axis=0) == result[cols].apply(lambda row: row / row.sum(axis=1), axis=1))
Out[47]:
True

И это быстрее:

In [48]:

cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
%timeit result[cols].div(result[cols].sum(axis=1), axis=0) 
%timeit result[cols].apply(lambda row: row / row.sum(axis=1), axis=1)
100 loops, best of 3: 2.38 ms per loop
100 loops, best of 3: 4.47 ms per loop