OpenCV Python одиночное (а не множественное) отслеживание blob?
Я пытаюсь получить однократное отслеживание blob через OpenCV на Python.
Нижеприведенный код работает, но он находит центроид всех отслеживаемых пикселей, а не только центр тяжести самого большого блоба. Это потому, что я беру моменты всех пикселей, но я не уверен, как еще цветной дорожки.
Я как бы зациклен на том, что именно мне нужно сделать, чтобы сделать это единственным блобером-трекером, а не мульти-blob-средним.
Здесь код:
#! /usr/bin/env python
#if using newer versions of opencv, just "import cv"
import cv2.cv as cv
color_tracker_window = "Color Tracker"
class ColorTracker:
def __init__(self):
cv.NamedWindow( color_tracker_window, 1 )
self.capture = cv.CaptureFromCAM(0)
def run(self):
while True:
img = cv.QueryFrame( self.capture )
#blur the source image to reduce color noise
cv.Smooth(img, img, cv.CV_BLUR, 3);
#convert the image to hsv(Hue, Saturation, Value) so its
#easier to determine the color to track(hue)
hsv_img = cv.CreateImage(cv.GetSize(img), 8, 3)
cv.CvtColor(img, hsv_img, cv.CV_BGR2HSV)
#limit all pixels that don't match our criteria, in this case we are
#looking for purple but if you want you can adjust the first value in
#both turples which is the hue range(120,140). OpenCV uses 0-180 as
#a hue range for the HSV color model
thresholded_img = cv.CreateImage(cv.GetSize(hsv_img), 8, 1)
cv.InRangeS(hsv_img, (120, 80, 80), (140, 255, 255), thresholded_img)
#determine the objects moments and check that the area is large
#enough to be our object
moments = cv.Moments(thresholded_img, 0)
area = cv.GetCentralMoment(moments, 0, 0)
#there can be noise in the video so ignore objects with small areas
if(area > 100000):
#determine the x and y coordinates of the center of the object
#we are tracking by dividing the 1, 0 and 0, 1 moments by the area
x = cv.GetSpatialMoment(moments, 1, 0)/area
y = cv.GetSpatialMoment(moments, 0, 1)/area
#print 'x: ' + str(x) + ' y: ' + str(y) + ' area: ' + str(area)
#create an overlay to mark the center of the tracked object
overlay = cv.CreateImage(cv.GetSize(img), 8, 3)
cv.Circle(overlay, (x, y), 2, (255, 255, 255), 20)
cv.Add(img, overlay, img)
#add the thresholded image back to the img so we can see what was
#left after it was applied
cv.Merge(thresholded_img, None, None, None, img)
#display the image
cv.ShowImage(color_tracker_window, img)
if cv.WaitKey(10) == 27:
break
if __name__=="__main__":
color_tracker = ColorTracker()
color_tracker.run()
Ответы
Ответ 1
Вам нужно сделать это следующим образом:
1) Получите пороговое изображение, используя функцию inRange, и вы можете применить некоторую эрозию и расширение для удаления мелких шумных частиц. Это поможет улучшить скорость обработки.
2) найдите Контуры, используя функцию findContours
3) найдите области контуров, используя функцию "contourArea" и выберите одну из них с максимальной площадью.
4) Теперь найдите его центр, как и вы, и отследите его.
Ниже приведен пример кода для нового модуля cv2:
import cv2
import numpy as np
# create video capture
cap = cv2.VideoCapture(0)
while(1):
# read the frames
_,frame = cap.read()
# smooth it
frame = cv2.blur(frame,(3,3))
# convert to hsv and find range of colors
hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
thresh = cv2.inRange(hsv,np.array((0, 80, 80)), np.array((20, 255, 255)))
thresh2 = thresh.copy()
# find contours in the threshold image
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
# finding contour with maximum area and store it as best_cnt
max_area = 0
for cnt in contours:
area = cv2.contourArea(cnt)
if area > max_area:
max_area = area
best_cnt = cnt
# finding centroids of best_cnt and draw a circle there
M = cv2.moments(best_cnt)
cx,cy = int(M['m10']/M['m00']), int(M['m01']/M['m00'])
cv2.circle(frame,(cx,cy),5,255,-1)
# Show it, if key pressed is 'Esc', exit the loop
cv2.imshow('frame',frame)
cv2.imshow('thresh',thresh2)
if cv2.waitKey(33)== 27:
break
# Clean up everything before leaving
cv2.destroyAllWindows()
cap.release()
Вы можете найти несколько образцов для отслеживания цветных объектов здесь: https://github.com/abidrahmank/OpenCV-Python/tree/master/Other_Examples
Кроме того, попробуйте использовать новый интерфейс cv2. Это намного проще и быстрее, чем старый cv. Для получения дополнительной информации ознакомьтесь с этим: Чем отличаются все эти интерфейсы OpenCV Python?
Ответ 2
После создания пороговых значений используйте обнаружение blob или cvfindcontours, чтобы получить отдельные капли.