Ответ 1
Вот пример того, как вы могли сделать это:
Перламутровый эффект ВЫКЛ:
Перламутровый эффект ВКЛ:
Vertex shader:
uniform vec3 fvEyePosition;
varying vec3 ViewDirection;
varying vec3 Normal;
void main( void )
{
gl_Position = ftransform();
vec4 fvObjectPosition = gl_ModelViewMatrix * gl_Vertex;
ViewDirection = fvEyePosition - fvObjectPosition.xyz;
Normal = gl_NormalMatrix * gl_Normal;
}
Фрагментный шейдер:
uniform samplerCube cubeMap;
varying vec3 ViewDirection;
varying vec3 Normal;
const float mother_pearl_brightness = 1.5;
#define MOTHER_PEARL
void main( void )
{
vec3 fvNormal = normalize(Normal);
vec3 fvViewDirection = normalize(ViewDirection);
vec3 fvReflection = normalize(reflect(fvViewDirection, fvNormal));
#ifdef MOTHER_PEARL
float view_dot_normal = max(dot(fvNormal, fvViewDirection), 0.0);
float view_dot_normal_inverse = 1.0 - view_dot_normal;
gl_FragColor = textureCube(cubeMap, fvReflection) * view_dot_normal;
gl_FragColor.r += mother_pearl_brightness * textureCube(cubeMap, fvReflection + vec3(0.1, 0.0, 0.0) * view_dot_normal_inverse) * (1.0 - view_dot_normal);
gl_FragColor.g += mother_pearl_brightness * textureCube(cubeMap, fvReflection + vec3(0.0, 0.1, 0.0) * view_dot_normal_inverse) * (1.0 - view_dot_normal);
gl_FragColor.b += mother_pearl_brightness * textureCube(cubeMap, fvReflection + vec3(0.0, 0.0, 0.1) * view_dot_normal_inverse) * (1.0 - view_dot_normal);
#else
gl_FragColor = textureCube(cubeMap, fvReflection);
#endif
}
Конечно, способ вычисления компонент R, G и B не очень корректен, но я отправляю этот код, чтобы показать вам путь, а не решение.
EDIT:
Здесь обещанная "правильная" версия переливного шейдера:
Vertex shader:
varying vec3 v_view_direction;
varying vec3 v_normal;
varying vec2 v_texture_coordinate;
void main(void)
{
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
v_texture_coordinate = gl_MultiTexCoord0.xy;
v_view_direction = -gl_ModelViewMatrix[3].xyz;
v_normal = gl_NormalMatrix * gl_Normal;
}
Фрагментный шейдер:
uniform samplerCube texture_reflection;
uniform sampler2D texture_iridescence;
uniform sampler2D texture_noise;
varying vec3 v_view_direction;
varying vec3 v_normal;
varying vec2 v_texture_coordinate;
const float noise_strength = 0.5;
void main(void)
{
vec3 n_normal = normalize(v_normal);
vec3 n_wiew_direction = normalize(v_view_direction);
vec3 n_reflection = normalize(reflect(n_wiew_direction, n_normal));
vec3 noise_vector = (texture2D(texture_noise, v_texture_coordinate).xyz - vec3(0.5)) * noise_strength;
float inverse_dot_view = 1.0 - max(dot(normalize(n_normal + noise_vector), n_wiew_direction), 0.0);
vec3 lookup_table_color = texture2D(texture_iridescence, vec2(inverse_dot_view, 0.0)).rgb;
gl_FragColor.rgb = textureCube(texture_reflection, n_reflection).rgb * lookup_table_color * 2.5;
gl_FragColor.a = 1.0;
}
Результаты
Нет радужного эффекта:
Радужный эффект (текстура поиска 1):
Радужный эффект (текстура поиска 2):
Текстура поиска радужной оболочки 2:
Текстура шума:
Примечания:
Текстура поиска радужной оболочки также может быть 1D текстурой, которая будет намного более эффективной с точки зрения памяти.
Кроме того, способ вычисления вектора шума на самом деле вздор. Правильным решением было бы использовать отображение рельефа. Но эй, это работает!: D