Сложность пути (самый быстрый маршрут) до любого заданного числа в python
Сегодня я пошел на математическое соревнование, и возник вопрос, который был примерно таким:
У вас есть номер n
, теперь вам нужно рассчитать, какой самый короткий маршрут для этого числа, но есть правила.
- Вы начинаете с номера
1
- Вы заканчиваете, когда вы достигаете
n
- Вы можете перейти на
n
либо удвоить свой предыдущий номер, либо добавить два предыдущих номера.
Пример: n = 25
Самый медленный маршрут: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25
(Вы просто добавляете 1
)
Самый быстрый маршрут: 1,2,4,8,16,24,25
, сложность = 6
Пример: n = 8
Самый быстрый маршрут: 1,2,4,8
, сложность = 3
Пример: n = 15
Самый быстрый маршрут: 1,2,3,6,9,15
, сложность = 5
Как создать программу, которая может рассчитать сложность заданного числа n
(с помощью n <= 32
)?
Я уже знаю, что для любого заданного числа n (n <= 32) сложность ниже, чем 1.45 x 2log (n).
Поэтому теперь мне нужно всего вычислить все маршруты со сложностью ниже 1,45 x 2log (n), а сравнить их и посмотреть, какой из них является самым быстрым "маршрутом".
Но я понятия не имею, как поместить все маршруты и все это в python, потому что количество маршрутов изменяется, когда число n изменяется.
Это то, что у меня есть сейчас:
number = raw_input('Enter your number here : ')
startnumber = 1
complexity = 0
while startnumber <= number
Ответы
Ответ 1
У вас есть решение динамического программирования, поскольку вы либо добавляете любые два числа, либо умножаете число на 2, мы можем попробовать все эти случаи и выбрать минимальный вариант, если сложность 25 равна 5, а маршрут содержит 9, тогда мы знаем решение для 9, которое равно 4, и мы можем использовать решение для 9 для генерации решения для 25. Нам также нужно следить за всеми возможными минимальными решениями для m, чтобы иметь возможность использовать его для его использования, чтобы решить n, где m < п
def solve(m):
p = [set([frozenset([])]) for i in xrange(m+1)] #contains all paths to reach n
a = [9999 for _ in xrange(m+1)]
#contains all complexities initialized with a big number
a[1] = 0
p[1] = set([frozenset([1])])
for i in xrange(1,m+1):
for pos in p[i]:
for j in pos: #try adding any two numbers and 2*any number
for k in pos:
if (j+k <= m):
if a[j+k] > a[i]+1:
a[j+k] = a[i] + 1
p[j+k] = set([frozenset(list(pos) + [j+k])])
elif a[j+k] == a[i]+1:
p[j+k].add(frozenset(list(pos) + [j+k]))
return a[m],sorted(list(p[m].pop()))
n = int(raw_input())
print solve(n)
это может решить до n = 100
Для больших чисел вы можете получить ускорение на 30% или более, добавив пару строк, чтобы удалить избыточные вычисления из внутреннего цикла. Для этого переменная pos2
создается и обрезается на каждой итерации:
def solve(m):
p = [set([frozenset([])]) for i in xrange(m+1)] #contains all paths to reach n
a = [9999 for _ in xrange(m+1)]
#contains all complexities initialized with a big number
a[1] = 0
p[1] = set([frozenset([1])])
for i in xrange(1,m+1):
for pos in p[i]:
pos2 = set(pos)
for j in pos: #try adding any two numbers and 2*any number
for k in pos2:
if (j+k <= m):
if a[j+k] > a[i]+1:
a[j+k] = a[i] + 1
p[j+k] = set([frozenset(list(pos) + [j+k])])
elif a[j+k] == a[i]+1:
p[j+k].add(frozenset(list(pos) + [j+k]))
pos2.remove(j)
return a[m],sorted(list(p[m].pop()))
Ответ 2
Я принимаю вызов:)
Алгоритм относительно быстр. Он вычисляет сложность первых 32 чисел в 50 мс на моем компьютере, и я не использую многопоточность. (или 370 мс для первых 100 номеров.)
Это рекурсивный алгоритм ветвления и разреза. Функция _shortest
принимает 3 аргумента: оптимизация лежит в аргументе max_len
. Например. если функция находит решение с длиной = 9, оно перестает рассматривать любые пути с длиной > 9. Первый найденный путь всегда очень хорош, что непосредственно следует из двоичного представления числа. Например. в двоичном формате: 111001 = > [1,10,100,1000,10000,100000,110000,111000,111001]. Это не всегда самый быстрый путь, но если вы ищете только пути, которые как минимум быстрей, вы можете отрезать большую часть дерева поиска.
#!/usr/bin/env python
# Find the shortest addition chain...
# @param acc List of integers, the "accumulator". A strictly monotonous
# addition chain with at least two elements.
# @param target An integer > 2. The number that should be reached.
# @param max_len An integer > 2. The maximum length of the addition chain
# @return A addition chain starting with acc and ending with target, with
# at most max_len elements. Or None if such an addition chain
# does not exist. The solution is optimal! There is no addition
# chain with these properties which can be shorter.
def _shortest(acc, target, max_len):
length = len(acc)
if length > max_len:
return None
last = acc[-1]
if last == target:
return acc;
if last > target:
return None
if length == max_len:
return None
last_half = (last / 2)
solution = None
potential_solution = None
good_len = max_len
# Quick check: can we make this work?
# (this improves the performance considerably for target > 70)
max_value = last
for _ in xrange(length, max_len):
max_value *= 2
if max_value >= target:
break
if max_value < target:
return None
for i in xrange(length-1, -1, -1):
a = acc[i]
if a < last_half:
break
for j in xrange(i, -1, -1):
b = acc[j]
s = a+b
if s <= last:
break
# modifying acc in-place has much better performance than copying
# the list and doing
# new_acc = list(acc)
# potential_solution = _shortest(new_acc, target, good_len)
acc.append(s)
potential_solution = _shortest(acc, target, good_len)
if potential_solution is not None:
new_len = len(potential_solution)
solution = list(potential_solution)
good_len = new_len-1
# since we didn't copy the list, we have to truncate it to its
# original length now.
del acc[length:]
return solution
# Finds the shortest addition chain reaching to n.
# E.g. 9 => [1,2,3,6,9]
def shortest(n):
if n > 3:
# common case first
return _shortest([1,2], n, n)
if n < 1:
raise ValueError("n must be >= 1")
return list(xrange(1,n+1))
for i in xrange(1,33):
s = shortest(i)
c = len(s) - 1
print ("complexity of %2d is %d: e.g. %s" % (i,c,s))
Вывод:
complexity of 1 is 0: e.g. [1]
complexity of 2 is 1: e.g. [1, 2]
complexity of 3 is 2: e.g. [1, 2, 3]
complexity of 4 is 2: e.g. [1, 2, 4]
complexity of 5 is 3: e.g. [1, 2, 4, 5]
complexity of 6 is 3: e.g. [1, 2, 4, 6]
complexity of 7 is 4: e.g. [1, 2, 4, 6, 7]
complexity of 8 is 3: e.g. [1, 2, 4, 8]
complexity of 9 is 4: e.g. [1, 2, 4, 8, 9]
complexity of 10 is 4: e.g. [1, 2, 4, 8, 10]
complexity of 11 is 5: e.g. [1, 2, 4, 8, 10, 11]
complexity of 12 is 4: e.g. [1, 2, 4, 8, 12]
complexity of 13 is 5: e.g. [1, 2, 4, 8, 12, 13]
complexity of 14 is 5: e.g. [1, 2, 4, 8, 12, 14]
complexity of 15 is 5: e.g. [1, 2, 4, 5, 10, 15]
complexity of 16 is 4: e.g. [1, 2, 4, 8, 16]
complexity of 17 is 5: e.g. [1, 2, 4, 8, 16, 17]
complexity of 18 is 5: e.g. [1, 2, 4, 8, 16, 18]
complexity of 19 is 6: e.g. [1, 2, 4, 8, 16, 18, 19]
complexity of 20 is 5: e.g. [1, 2, 4, 8, 16, 20]
complexity of 21 is 6: e.g. [1, 2, 4, 8, 16, 20, 21]
complexity of 22 is 6: e.g. [1, 2, 4, 8, 16, 20, 22]
complexity of 23 is 6: e.g. [1, 2, 4, 5, 9, 18, 23]
complexity of 24 is 5: e.g. [1, 2, 4, 8, 16, 24]
complexity of 25 is 6: e.g. [1, 2, 4, 8, 16, 24, 25]
complexity of 26 is 6: e.g. [1, 2, 4, 8, 16, 24, 26]
complexity of 27 is 6: e.g. [1, 2, 4, 8, 9, 18, 27]
complexity of 28 is 6: e.g. [1, 2, 4, 8, 16, 24, 28]
complexity of 29 is 7: e.g. [1, 2, 4, 8, 16, 24, 28, 29]
complexity of 30 is 6: e.g. [1, 2, 4, 8, 10, 20, 30]
complexity of 31 is 7: e.g. [1, 2, 4, 8, 10, 20, 30, 31]
complexity of 32 is 5: e.g. [1, 2, 4, 8, 16, 32]
Ответ 3
Жесткое принуждение к этому
def solve(m, path):
if path[-1] == m:
return path
if path[-1] > m:
return False
best_path = [i for i in range(m)]
test_path = solve (m, path + [path[-1]*2])
if test_path and len(test_path) < len(best_path):
best_path = test_path
for k1 in path[:-1] :
for k2 in path[:-1] :
test_path = solve (m, path + [path[-1] + k1 + k2])
if test_path and len(test_path) < len(best_path):
#retain best
best_path = test_path
return best_path
print (solve(19, [1,2])) #[1, 2, 4, 8, 16, 19]
print (solve(25, [1,2])) #[1, 2, 4, 8, 16, 25]
Работает довольно медленно, я уверен, что разумное решение существует, но это выглядит семантически правильным.
Ответ 4
Метод грубой силы, который просто ищет все возможные пути, пока не достигнет своей цели. Это очень быстро, поскольку он не оценивает числа, которые были достигнуты с меньшей сложностью, но гарантированно найдет оптимальный путь.
# Use a node class that contains the number as well as a pointer to its parent
class Node:
def __init__(self, number, parent):
self.number = number
self.parent = parent
# get a list of all the numbers to reach this node
def getPath(self):
path = [self.number]
parent = self.parent
while parent != None:
path.append(parent.number)
parent = parent.parent
return path
def solve(start, target):
currentList = [] # List of visited nodes in the previous round
nextList = [Node(start, None)] # List of visited nodes in the next round (start with at least one number)
seen = set([start]) # store all number that have already been seen in the previous round
while nextList: # continue until the final number has reached, on each iteration the complexity grows
currentList = nextList # swap the lists around
nextList = []
for n in currentList:
path = n.getPath() # fetch all the number that are needed to reach this point
if n.number == target: # check of we have reach our target
return path[::-1] # the path is in reverse at this point, so reverse it back
for a in path: # for any combination of the last number and a previous number (including the last, which is the same as multiplying it by 2)
newnumber = a + path[0]
if newnumber <= target and newnumber not in seen: # only evaluate the new number if is is not yet seen already on a lower complexity
nextList.append(Node(newnumber, n))
for n in nextList: # update the seen list
seen.add(n.number)
return [] # if the destination could not be reached
print "path to 25 = ", solve(1, 25)
print "path to 8 = ", solve(1, 8)
print "path to 15 = ", solve(1, 15)
print "path to 500 = ", solve(1, 500)
выведет следующее:
path to 25 = [1, 2, 4, 8, 16, 24, 25]
path to 8 = [1, 2, 4, 8]
path to 15 = [1, 2, 4, 5, 10, 15]
path to 500 = [1, 2, 4, 8, 16, 32, 64, 96, 100, 200, 400, 500]
Я тестировал этот метод для решения переменных до 500, и он смог решить его за 0,36 секунды.