Ответ 1
Хорошо, я могу думать о нескольких путях. (1) по существу взорвать фрейм данных путем слияния на company
, а затем фильтровать на 30-дневных окнах после слияния. Это должно быть быстро, но может использовать много памяти. (2) Переместите слияние и фильтрацию в 30-дневное окно в группу. Это приводит к слиянию для каждой группы, поэтому он будет медленнее, но он должен использовать меньше памяти
Вариант № 1
Предположим, что ваши данные выглядят следующим образом (я расширил ваши данные образца):
print df
company date measure
0 0 2010-01-01 10
1 0 2010-01-15 10
2 0 2010-02-01 10
3 0 2010-02-15 10
4 0 2010-03-01 10
5 0 2010-03-15 10
6 0 2010-04-01 10
7 1 2010-03-01 5
8 1 2010-03-15 5
9 1 2010-04-01 5
10 1 2010-04-15 5
11 1 2010-05-01 5
12 1 2010-05-15 5
print windows
company end_date
0 0 2010-02-01
1 0 2010-03-15
2 1 2010-04-01
3 1 2010-05-15
Создайте дату начала для 30-дневных окон:
windows['beg_date'] = (windows['end_date'].values.astype('datetime64[D]') -
np.timedelta64(30,'D'))
print windows
company end_date beg_date
0 0 2010-02-01 2010-01-02
1 0 2010-03-15 2010-02-13
2 1 2010-04-01 2010-03-02
3 1 2010-05-15 2010-04-15
Теперь сделайте слияние, а затем выберите на основе, если date
попадает в beg_date
и end_date
:
df = df.merge(windows,on='company',how='left')
df = df[(df.date >= df.beg_date) & (df.date <= df.end_date)]
print df
company date measure end_date beg_date
2 0 2010-01-15 10 2010-02-01 2010-01-02
4 0 2010-02-01 10 2010-02-01 2010-01-02
7 0 2010-02-15 10 2010-03-15 2010-02-13
9 0 2010-03-01 10 2010-03-15 2010-02-13
11 0 2010-03-15 10 2010-03-15 2010-02-13
16 1 2010-03-15 5 2010-04-01 2010-03-02
18 1 2010-04-01 5 2010-04-01 2010-03-02
21 1 2010-04-15 5 2010-05-15 2010-04-15
23 1 2010-05-01 5 2010-05-15 2010-04-15
25 1 2010-05-15 5 2010-05-15 2010-04-15
Вы можете вычислить 30-дневные оконные суммы, группируя по company
и end_date
:
print df.groupby(['company','end_date']).sum()
measure
company end_date
0 2010-02-01 20
2010-03-15 30
1 2010-04-01 10
2010-05-15 15
Вариант № 2 Переместить все слияния в группу. Это должно быть лучше в памяти, но я думаю гораздо медленнее:
windows['beg_date'] = (windows['end_date'].values.astype('datetime64[D]') -
np.timedelta64(30,'D'))
def cond_merge(g,windows):
g = g.merge(windows,on='company',how='left')
g = g[(g.date >= g.beg_date) & (g.date <= g.end_date)]
return g.groupby('end_date')['measure'].sum()
print df.groupby('company').apply(cond_merge,windows)
company end_date
0 2010-02-01 20
2010-03-15 30
1 2010-04-01 10
2010-05-15 15
Еще один вариант. Если ваши окна никогда не перекрываются (например, в данных примера), вы можете сделать что-то вроде следующего в качестве альтернативы, которое не взорвет фреймворк данных, но довольно быстро:/p >
windows['date'] = windows['end_date']
df = df.merge(windows,on=['company','date'],how='outer')
print df
company date measure end_date
0 0 2010-01-01 10 NaT
1 0 2010-01-15 10 NaT
2 0 2010-02-01 10 2010-02-01
3 0 2010-02-15 10 NaT
4 0 2010-03-01 10 NaT
5 0 2010-03-15 10 2010-03-15
6 0 2010-04-01 10 NaT
7 1 2010-03-01 5 NaT
8 1 2010-03-15 5 NaT
9 1 2010-04-01 5 2010-04-01
10 1 2010-04-15 5 NaT
11 1 2010-05-01 5 NaT
12 1 2010-05-15 5 2010-05-15
Это слияние существенно вставляет даты окончания окна в фреймворк данных, а затем заполняет даты окончания (по группам), дает вам структуру, которая легко создаст вам окна суммирования:
df['end_date'] = df.groupby('company')['end_date'].apply(lambda x: x.bfill())
print df
company date measure end_date
0 0 2010-01-01 10 2010-02-01
1 0 2010-01-15 10 2010-02-01
2 0 2010-02-01 10 2010-02-01
3 0 2010-02-15 10 2010-03-15
4 0 2010-03-01 10 2010-03-15
5 0 2010-03-15 10 2010-03-15
6 0 2010-04-01 10 NaT
7 1 2010-03-01 5 2010-04-01
8 1 2010-03-15 5 2010-04-01
9 1 2010-04-01 5 2010-04-01
10 1 2010-04-15 5 2010-05-15
11 1 2010-05-01 5 2010-05-15
12 1 2010-05-15 5 2010-05-15
df = df[df.end_date.notnull()]
df['beg_date'] = (df['end_date'].values.astype('datetime64[D]') -
np.timedelta64(30,'D'))
print df
company date measure end_date beg_date
0 0 2010-01-01 10 2010-02-01 2010-01-02
1 0 2010-01-15 10 2010-02-01 2010-01-02
2 0 2010-02-01 10 2010-02-01 2010-01-02
3 0 2010-02-15 10 2010-03-15 2010-02-13
4 0 2010-03-01 10 2010-03-15 2010-02-13
5 0 2010-03-15 10 2010-03-15 2010-02-13
7 1 2010-03-01 5 2010-04-01 2010-03-02
8 1 2010-03-15 5 2010-04-01 2010-03-02
9 1 2010-04-01 5 2010-04-01 2010-03-02
10 1 2010-04-15 5 2010-05-15 2010-04-15
11 1 2010-05-01 5 2010-05-15 2010-04-15
12 1 2010-05-15 5 2010-05-15 2010-04-15
df = df[(df.date >= df.beg_date) & (df.date <= df.end_date)]
print df.groupby(['company','end_date']).sum()
measure
company end_date
0 2010-02-01 20
2010-03-15 30
1 2010-04-01 10
2010-05-15 15
Другой альтернативой является повторная выборка первого фрейма данных для ежедневных данных, а затем вычисление roll_sums с 30-дневным окном; и выберите даты в конце, которые вас интересуют. Это может быть довольно интенсивным в памяти.