Сортировать массив целых чисел лексикографически С++

Я хочу сортировать большой массив целых чисел (например, 1 миллион элементов) лексикографически.

Пример:

input [] = { 100, 21 , 22 , 99 , 1  , 927 }
sorted[] = { 1  , 100, 21 , 22 , 927, 99  }

Я сделал это, используя простейший возможный метод:

  • преобразовать все числа в строки (очень дорого, потому что это займет огромную память)
  • используйте std:sort с strcmp как функцию сравнения
  • преобразовать строки в целые числа

Есть ли лучший способ, чем этот?

Ответы

Ответ 1

Используйте std::sort() с подходящей функцией сравнения. Это сокращает требования к памяти.

Функция сравнения может использовать n % 10, n / 10 % 10, n / 100 % 10 и т.д. для доступа к отдельным цифрам (для целых положительных чисел, отрицательные целые числа работают по-разному).

Ответ 2

Чтобы обеспечить произвольное упорядочение сортировки, вы можете предоставить компаратор std::sort. В этом случае он будет несколько сложным, используя логарифмы для проверки отдельных цифр вашего номера в базе 10.

Вот пример:— комментарии в строке описывают, что происходит.

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cassert>

int main() {
    int input[] { 100, 21, 22, 99, 1, 927, -50, -24, -160 };

    /**
     * Sorts the array lexicographically.
     * 
     * The trick is that we have to compare digits left-to-right
     * (considering typical Latin decimal notation) and that each of
     * two numbers to compare may have a different number of digits.
     * 
     * This is very efficient in storage space, but inefficient in
     * execution time; an approach that pre-visits each element and
     * stores a translated representation will at least double your
     * storage requirements (possibly a problem with large inputs)
     * but require only a single translation of each element.
     */
    std::sort(
        std::begin(input),
        std::end(input),
        [](int lhs, int rhs) -> bool {
            // Returns true if lhs < rhs
            // Returns false otherwise
            const auto BASE      = 10;
            const bool LHS_FIRST = true;
            const bool RHS_FIRST = false;
            const bool EQUAL     = false;


            // There no point in doing anything at all
            // if both inputs are the same; strict-weak
            // ordering requires that we return `false`
            // in this case.
            if (lhs == rhs) {
                return EQUAL;
            }

            // Compensate for sign
            if (lhs < 0 && rhs < 0) {
                // When both are negative, sign on its own yields
                // no clear ordering between the two arguments.
                // 
                // Remove the sign and continue as for positive
                // numbers.
                lhs *= -1;
                rhs *= -1;
            }
            else if (lhs < 0) {
                // When the LHS is negative but the RHS is not,
                // consider the LHS "first" always as we wish to
                // prioritise the leading '-'.
                return LHS_FIRST;
            }
            else if (rhs < 0) {
                // When the RHS is negative but the LHS is not,
                // consider the RHS "first" always as we wish to
                // prioritise the leading '-'.
                return RHS_FIRST;
            }

            // Counting the number of digits in both the LHS and RHS
            // arguments is *almost* trivial.
            const auto lhs_digits = (
                lhs == 0
                ? 1
                : std::ceil(std::log(lhs+1)/std::log(BASE))
            );

            const auto rhs_digits = (
                rhs == 0
                ? 1
                : std::ceil(std::log(rhs+1)/std::log(BASE))
            );

            // Now we loop through the positions, left-to-right,
            // calculating the digit at these positions for each
            // input, and comparing them numerically. The
            // lexicographic nature of the sorting comes from the
            // fact that we are doing this per-digit comparison
            // rather than considering the input value as a whole.
            const auto max_pos = std::max(lhs_digits, rhs_digits);
            for (auto pos = 0; pos < max_pos; pos++) {
                if (lhs_digits - pos == 0) {
                    // Ran out of digits on the LHS;
                    // prioritise the shorter input
                    return LHS_FIRST;
                }
                else if (rhs_digits - pos == 0) {
                    // Ran out of digits on the RHS;
                    // prioritise the shorter input
                    return RHS_FIRST;
                }
                else {
                    const auto lhs_x = (lhs / static_cast<decltype(BASE)>(std::pow(BASE, lhs_digits - 1 - pos))) % BASE;
                    const auto rhs_x = (rhs / static_cast<decltype(BASE)>(std::pow(BASE, rhs_digits - 1 - pos))) % BASE;

                    if (lhs_x < rhs_x)
                        return LHS_FIRST;
                    else if (rhs_x < lhs_x)
                        return RHS_FIRST;
                }
            }

            // If we reached the end and everything still
            // matches up, then something probably went wrong
            // as I'd have expected to catch this in the tests
            // for equality.
            assert("Unknown case encountered");
        }
    );

    std::cout << '{';
    for (auto x : input)
        std::cout << x << ", ";
    std::cout << '}';

    // Output: {-160, -24, -50, 1, 100, 21, 22, 927, 99, }
}

Демо

Есть более быстрые способы подсчета числа цифр в номере, но выше вы начнете.

Ответ 3

Вот еще один алгоритм, который выполняет некоторые вычисления перед сортировкой. Это кажется довольно быстрым, несмотря на дополнительное копирование (см. сравнения).

Примечание:

  • он поддерживает только положительные целые числа
  • поддерживает только целые числа <= std::numeric_limits<int>::max()/10

<суб > N.B. вы можете оптимизировать count_digits и my_pow10; например, см. Три подсказки оптимизации для С++ от Andrei Alexandrescu и В любом случае быстрее, чем pow() для вычисления целочисленной мощности 10 в С++?

Помощники:

#include <random>
#include <vector>
#include <utility>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <limits>
#include <iterator>

// non-optimized version
int count_digits(int p) // returns `0` for `p == 0`
{
    int res = 0;
    for(; p != 0; ++res)
    {
        p /= 10;
    }
    return res;
}

// non-optimized version
int my_pow10(unsigned exp)
{
    int res = 1;
    for(; exp != 0; --exp)
    {
        res *= 10;
    }
    return res;
}

Алгоритм (примечание - не на месте):

// helper to provide integers with the same number of digits
template<class T, class U>
std::pair<T, T> lexicographic_pair_helper(T const p, U const maxDigits)
{
    auto const digits = count_digits(p);
    // append zeros so that `l` has `maxDigits` digits
    auto const l = static_cast<T>( p  * my_pow10(maxDigits-digits) );
    return {l, p};
}

template<class RaIt>
using pair_vec
    = std::vector<std::pair<typename std::iterator_traits<RaIt>::value_type,
                            typename std::iterator_traits<RaIt>::value_type>>;

template<class RaIt>
pair_vec<RaIt> lexicographic_sort(RaIt p_beg, RaIt p_end)
{
    if(p_beg == p_end) return {};

    auto max = *std::max_element(p_beg, p_end);
    auto maxDigits = count_digits(max);

    pair_vec<RaIt> result;
    result.reserve( std::distance(p_beg, p_end) );

    for(auto i = p_beg; i != p_end; ++i)
        result.push_back( lexicographic_pair_helper(*i, maxDigits) );

    using value_type = typename pair_vec<RaIt>::value_type;

    std::sort(begin(result), end(result),
              [](value_type const& l, value_type const& r)
              {
                  if(l.first < r.first) return true;
                  if(l.first > r.first) return false;
                  return l.second < r.second; }
             );

    return result;
}

Пример использования:

int main()
{
    std::vector<int> input = { 100, 21 , 22 , 99 , 1  , 927 };
    // generate some numbers
    /*{
        constexpr int number_of_elements = 1E6;
        std::random_device rd;
        std::mt19937 gen( rd() );
        std::uniform_int_distribution<>
            dist(0, std::numeric_limits<int>::max()/10);
        for(int i = 0; i < number_of_elements; ++i)
            input.push_back( dist(gen) );
    }*/

    std::cout << "unsorted: ";
    for(auto const& e : input) std::cout << e << ", ";
    std::cout << "\n\n";


    auto sorted = lexicographic_sort(begin(input), end(input));

    std::cout << "sorted: ";
    for(auto const& e : sorted) std::cout << e.second << ", ";
    std::cout << "\n\n";
}

Ответ 4

Здесь вики сообщества для сравнения решений. Я взял код nim и сделал его легко расширяемым. Не стесняйтесь добавлять свои решения и результаты.

Образец запускает старый медленный компьютер (3 ГБ оперативной памяти, Core2Duo U9400) с g++ 4.9 @ -O3 -march=native:

number of elements: 1e+03
size of integer type: 4

reference solution: Lightness Races in Orbit

solution "dyp":
    duration: 0 ms and 301 microseconds
    comparison to reference solution: exact match
solution "Nim":
    duration: 2 ms and 160 microseconds
    comparison to reference solution: exact match
solution "nyarlathotep":
    duration: 8 ms and 126 microseconds
    comparison to reference solution: exact match
solution "notbad":
    duration: 1 ms and 102 microseconds
    comparison to reference solution: exact match
solution "Eric Postpischil":
    duration: 2 ms and 550 microseconds
    comparison to reference solution: exact match
solution "Lightness Races in Orbit":
    duration: 17 ms and 469 microseconds
    comparison to reference solution: exact match
solution "pts":
    duration: 1 ms and 92 microseconds
    comparison to reference solution: exact match

==========================================================

number of elements: 1e+04
size of integer type: 4

reference solution: Lightness Races in Orbit

solution "nyarlathotep":
    duration: 109 ms and 712 microseconds
    comparison to reference solution: exact match
solution "Lightness Races in Orbit":
    duration: 272 ms and 819 microseconds
    comparison to reference solution: exact match
solution "dyp":
    duration: 1 ms and 748 microseconds
    comparison to reference solution: exact match
solution "notbad":
    duration: 16 ms and 115 microseconds
    comparison to reference solution: exact match
solution "pts":
    duration: 15 ms and 10 microseconds
    comparison to reference solution: exact match
solution "Eric Postpischil":
    duration: 33 ms and 301 microseconds
    comparison to reference solution: exact match
solution "Nim":
    duration: 17 ms and 83 microseconds
    comparison to reference solution: exact match

==========================================================

number of elements: 1e+05
size of integer type: 4

reference solution: Lightness Races in Orbit

solution "Nim":
    duration: 217 ms and 4 microseconds
    comparison to reference solution: exact match
solution "pts":
    duration: 199 ms and 505 microseconds
    comparison to reference solution: exact match
solution "dyp":
    duration: 20 ms and 330 microseconds
    comparison to reference solution: exact match
solution "Eric Postpischil":
    duration: 415 ms and 477 microseconds
    comparison to reference solution: exact match
solution "Lightness Races in Orbit":
    duration: 3955 ms and 58 microseconds
    comparison to reference solution: exact match
solution "notbad":
    duration: 215 ms and 259 microseconds
    comparison to reference solution: exact match
solution "nyarlathotep":
    duration: 1341 ms and 46 microseconds
    comparison to reference solution: mismatch found

==========================================================

number of elements: 1e+06
size of integer type: 4

reference solution: Lightness Races in Orbit

solution "Lightness Races in Orbit":
    duration: 52861 ms and 314 microseconds
    comparison to reference solution: exact match
solution "Eric Postpischil":
    duration: 4757 ms and 608 microseconds
    comparison to reference solution: exact match
solution "nyarlathotep":
    duration: 15654 ms and 195 microseconds
    comparison to reference solution: mismatch found
solution "dyp":
    duration: 233 ms and 779 microseconds
    comparison to reference solution: exact match
solution "pts":
    duration: 2181 ms and 634 microseconds
    comparison to reference solution: exact match
solution "Nim":
    duration: 2539 ms and 9 microseconds
    comparison to reference solution: exact match
solution "notbad":
    duration: 2675 ms and 362 microseconds
    comparison to reference solution: exact match

==========================================================

number of elements: 1e+07
size of integer type: 4

reference solution: Lightness Races in Orbit

solution "notbad":
    duration: 33425 ms and 423 microseconds
    comparison to reference solution: exact match
solution "pts":
    duration: 26000 ms and 398 microseconds
    comparison to reference solution: exact match
solution "Eric Postpischil":
    duration: 56206 ms and 359 microseconds
    comparison to reference solution: exact match
solution "Lightness Races in Orbit":
    duration: 658540 ms and 342 microseconds
    comparison to reference solution: exact match
solution "nyarlathotep":
    duration: 187064 ms and 518 microseconds
    comparison to reference solution: mismatch found
solution "Nim":
    duration: 30519 ms and 227 microseconds
    comparison to reference solution: exact match
solution "dyp":
    duration: 2624 ms and 644 microseconds
    comparison to reference solution: exact match

Алгоритмы должны быть структурированы с помощью шаблонов операторов функциональных вызовов, которые поддерживают интерфейс:

template<class RaIt> operator()(RaIt begin, RaIt end);

Копия входных данных предоставляется в качестве параметра, ожидается, что алгоритм предоставит результат в том же диапазоне (например, в месте сортировки).

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <random>
#include <vector>
#include <utility>
#include <cmath>
#include <cassert>
#include <chrono>
#include <cstring>
#include <climits>
#include <functional>
#include <cstdlib>
#include <iomanip>

using duration_t = decltype(  std::chrono::high_resolution_clock::now()
                            - std::chrono::high_resolution_clock::now());

template<class T>
struct result_t
{
    std::vector<T> numbers;
    duration_t duration;
    char const* name;
};

template<class RaIt, class F>
result_t<typename std::iterator_traits<RaIt>::value_type>
apply_algorithm(RaIt p_beg, RaIt p_end, F f, char const* name)
{
    using value_type = typename std::iterator_traits<RaIt>::value_type;

    std::vector<value_type> inplace(p_beg, p_end);

    auto start = std::chrono::high_resolution_clock::now();

    f(begin(inplace), end(inplace));

    auto end = std::chrono::high_resolution_clock::now();
    auto duration = end - start;

    return {std::move(inplace), duration, name};
}

// non-optimized version
int count_digits(int p) // returns `0` for `p == 0`
{
        int res = 0;
        for(; p != 0; ++res)
        {
            p /= 10;
        }
        return res;
}

// non-optimized version
int my_pow10(unsigned exp)
{
        int res = 1;
        for(; exp != 0; --exp)
        {
            res *= 10;
        }
        return res;
}


// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// paste algorithms here
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


int main(int argc, char** argv)
{
    using integer_t = int;
    constexpr integer_t dist_min = 0;
    constexpr integer_t dist_max = std::numeric_limits<integer_t>::max()/10;
    constexpr std::size_t default_number_of_elements = 1E6;

    const std::size_t number_of_elements = argc>1 ? std::atoll(argv[1]) :
                                           default_number_of_elements;
    std::cout << "number of elements: ";
    std::cout << std::scientific << std::setprecision(0);
    std::cout << (double)number_of_elements << "\n";
    std::cout << /*std::defaultfloat <<*/ std::setprecision(6);
    std::cout.unsetf(std::ios_base::floatfield);

    std::cout << "size of integer type: " << sizeof(integer_t) << "\n\n";

    std::vector<integer_t> input;
    {
        input.reserve(number_of_elements);

        std::random_device rd;
        std::mt19937 gen( rd() );
        std::uniform_int_distribution<> dist(dist_min, dist_max);

        for(std::size_t i = 0; i < number_of_elements; ++i)
            input.push_back( dist(gen) );
    }

    auto b = begin(input);
    auto e = end(input);

    using res_t = result_t<integer_t>;
    std::vector< std::function<res_t()> > algorithms;

    #define MAKE_BINDER(B, E, ALGO, NAME) \
        std::bind( &apply_algorithm<decltype(B),decltype(ALGO)>, \
                   B,E,ALGO,NAME )
    constexpr auto lightness_name = "Lightness Races in Orbit";
    algorithms.push_back( MAKE_BINDER(b, e, lightness(), lightness_name) );
    algorithms.push_back( MAKE_BINDER(b, e, dyp(), "dyp") );
    algorithms.push_back( MAKE_BINDER(b, e, nim(), "Nim") );
    algorithms.push_back( MAKE_BINDER(b, e, pts(), "pts") );
    algorithms.push_back( MAKE_BINDER(b, e, epost(), "Eric Postpischil") );
    algorithms.push_back( MAKE_BINDER(b, e, nyar(), "nyarlathotep") );
    algorithms.push_back( MAKE_BINDER(b, e, notbad(), "notbad") );

    {
        std::srand( std::random_device()() );
        std::random_shuffle(begin(algorithms), end(algorithms));
    }

    std::vector< result_t<integer_t> > res;
    for(auto& algo : algorithms)
        res.push_back( algo() );

    auto reference_solution
        = *std::find_if(begin(res), end(res),
                        [](result_t<integer_t> const& p)
                        { return 0 == std::strcmp(lightness_name, p.name); });
    std::cout << "reference solution: "<<reference_solution.name<<"\n\n";

    for(auto const& e : res)
    {
        std::cout << "solution \""<<e.name<<"\":\n";
        auto ms =
            std::chrono::duration_cast<std::chrono::microseconds>(e.duration);
        std::cout << "\tduration: "<<ms.count()/1000<<" ms and "
                                   <<ms.count()%1000<<" microseconds\n";

        std::cout << "\tcomparison to reference solution: ";
        if(e.numbers.size() != reference_solution.numbers.size())
        {
            std::cout << "ouput count mismatch\n";
            break;
        }

        auto mismatch = std::mismatch(begin(e.numbers), end(e.numbers),
                                      begin(reference_solution.numbers)).first;
        if(end(e.numbers) == mismatch)
        {
            std::cout << "exact match\n";
        }else
        {
            std::cout << "mismatch found\n";
        }
    }
}

Текущие алгоритмы; Примечание. Я заменил счетчики цифр и pow-of-10 глобальной функцией, поэтому мы все выиграем, если кто-то оптимизирует.

struct lightness
{
    template<class RaIt> void operator()(RaIt b, RaIt e)
    {
        using T = typename std::iterator_traits<RaIt>::value_type;

        /**
         * Sorts the array lexicographically.
         *
         * The trick is that we have to compare digits left-to-right
         * (considering typical Latin decimal notation) and that each of
         * two numbers to compare may have a different number of digits.
         *
         * This is very efficient in storage space, but inefficient in
         * execution time; an approach that pre-visits each element and
         * stores a translated representation will at least double your
         * storage requirements (possibly a problem with large inputs)
         * but require only a single translation of each element.
         */
        std::sort(
            b,
            e,
            [](T lhs, T rhs) -> bool {
                // Returns true if lhs < rhs
                // Returns false otherwise
                const auto BASE      = 10;
                const bool LHS_FIRST = true;
                const bool RHS_FIRST = false;
                const bool EQUAL     = false;


                // There no point in doing anything at all
                // if both inputs are the same; strict-weak
                // ordering requires that we return `false`
                // in this case.
                if (lhs == rhs) {
                    return EQUAL;
                }

                // Compensate for sign
                if (lhs < 0 && rhs < 0) {
                    // When both are negative, sign on its own yields
                    // no clear ordering between the two arguments.
                    //
                    // Remove the sign and continue as for positive
                    // numbers.
                    lhs *= -1;
                    rhs *= -1;
                }
                else if (lhs < 0) {
                    // When the LHS is negative but the RHS is not,
                    // consider the LHS "first" always as we wish to
                    // prioritise the leading '-'.
                    return LHS_FIRST;
                }
                else if (rhs < 0) {
                    // When the RHS is negative but the LHS is not,
                    // consider the RHS "first" always as we wish to
                    // prioritise the leading '-'.
                    return RHS_FIRST;
                }

                // Counting the number of digits in both the LHS and RHS
                // arguments is *almost* trivial.
                const auto lhs_digits = (
                    lhs == 0
                    ? 1
                    : std::ceil(std::log(lhs+1)/std::log(BASE))
                );

                const auto rhs_digits = (
                    rhs == 0
                    ? 1
                    : std::ceil(std::log(rhs+1)/std::log(BASE))
                );

                // Now we loop through the positions, left-to-right,
                // calculating the digit at these positions for each
                // input, and comparing them numerically. The
                // lexicographic nature of the sorting comes from the
                // fact that we are doing this per-digit comparison
                // rather than considering the input value as a whole.
                const auto max_pos = std::max(lhs_digits, rhs_digits);
                for (auto pos = 0; pos < max_pos; pos++) {
                    if (lhs_digits - pos == 0) {
                        // Ran out of digits on the LHS;
                        // prioritise the shorter input
                        return LHS_FIRST;
                    }
                    else if (rhs_digits - pos == 0) {
                        // Ran out of digits on the RHS;
                        // prioritise the shorter input
                        return RHS_FIRST;
                    }
                    else {
                        const auto lhs_x = (lhs / static_cast<decltype(BASE)>(std::pow(BASE, lhs_digits - 1 - pos))) % BASE;
                        const auto rhs_x = (rhs / static_cast<decltype(BASE)>(std::pow(BASE, rhs_digits - 1 - pos))) % BASE;

                        if (lhs_x < rhs_x)
                            return LHS_FIRST;
                        else if (rhs_x < lhs_x)
                            return RHS_FIRST;
                    }
                }

                // If we reached the end and everything still
                // matches up, then something probably went wrong
                // as I'd have expected to catch this in the tests
                // for equality.
                assert("Unknown case encountered");

                // dyp: suppress warning and throw
                throw "up";
            }
        );
    }
};

namespace ndyp
{
    // helper to provide integers with the same number of digits
    template<class T, class U>
    std::pair<T, T> lexicographic_pair_helper(T const p, U const maxDigits)
    {
        auto const digits = count_digits(p);
        // append zeros so that `l` has `maxDigits` digits
        auto const l = static_cast<T>( p  * my_pow10(maxDigits-digits) );
        return {l, p};
    }

    template<class RaIt>
    using pair_vec
        = std::vector<std::pair<typename std::iterator_traits<RaIt>::value_type,
                                typename std::iterator_traits<RaIt>::value_type>>;

    template<class RaIt>
    pair_vec<RaIt> lexicographic_sort(RaIt p_beg, RaIt p_end)
    {
        if(p_beg == p_end) return pair_vec<RaIt>{};

        auto max = *std::max_element(p_beg, p_end);
        auto maxDigits = count_digits(max);

        pair_vec<RaIt> result;
        result.reserve( std::distance(p_beg, p_end) );

        for(auto i = p_beg; i != p_end; ++i)
            result.push_back( lexicographic_pair_helper(*i, maxDigits) );

        using value_type = typename pair_vec<RaIt>::value_type;

        std::sort(begin(result), end(result),
                  [](value_type const& l, value_type const& r)
                  {
                      if(l.first < r.first) return true;
                      if(l.first > r.first) return false;
                      return l.second < r.second; }
                 );

        return result;
    }
}

struct dyp
{
    template<class RaIt> void operator()(RaIt b, RaIt e)
    {
        auto pairvec = ndyp::lexicographic_sort(b, e);
        std::transform(begin(pairvec), end(pairvec), b,
                       [](typename decltype(pairvec)::value_type const& e) { return e.second; });
    }
};


namespace nnim
{
    bool comp(int l, int r)
    {
      int lv[10] = {}; // probably possible to get this from numeric_limits
      int rv[10] = {};

      int lc = 10; // ditto
      int rc = 10;
      while (l || r)
      {
        if (l)
        {
          auto t = l / 10;
          lv[--lc] = l - (t * 10);
          l = t;
        }
        if (r)
        {
          auto t = r / 10;
          rv[--rc] = r - (t * 10);
          r = t;
        }
      }
      while (lc < 10 && rc < 10)
      {
        if (lv[lc] == rv[rc])
        {
          lc++;
          rc++;
        }
        else
          return lv[lc] < rv[rc];
      }
      return lc > rc;
    }
}

struct nim
{
    template<class RaIt> void operator()(RaIt b, RaIt e)
    {
        std::sort(b, e, nnim::comp);
    }
};

struct pts
{
        template<class T> static bool lex_less(T a, T b) {
          unsigned la = 1, lb = 1;
          for (T t = a; t > 9; t /= 10) ++la;
          for (T t = b; t > 9; t /= 10) ++lb;
          const bool ll = la < lb;
          while (la > lb) { b *= 10; ++lb; }
          while (lb > la) { a *= 10; ++la; }
          return a == b ? ll : a < b;
        }

        template<class RaIt> void operator()(RaIt b, RaIt e)
    {
        std::sort(b, e, lex_less<typename std::iterator_traits<RaIt>::value_type>);
    }
};

struct epost
{
        static bool compare(int x, int y)
        {
                static const double limit = .5 * (log(INT_MAX) - log(INT_MAX-1));

                double lx = log10(x);
                double ly = log10(y);
                double fx = lx - floor(lx);  // Get the mantissa of lx.
                double fy = ly - floor(ly);  // Get the mantissa of ly.
                return fabs(fx - fy) < limit ? lx < ly : fx < fy;
        }

        template<class RaIt> void operator()(RaIt b, RaIt e)
    {
        std::sort(b, e, compare);
    }
};

struct nyar
{
        static bool lexiSmaller(int i1, int i2)
        {
            int digits1 = count_digits(i1);
            int digits2 = count_digits(i2);

            double val1 = i1/pow(10.0, digits1-1);
            double val2 = i2/pow(10.0, digits2-1);

            while (digits1 > 0 && digits2 > 0 && (int)val1 == (int)val2)
            {
                digits1--;
                digits2--;
                val1 = (val1 - (int)val1)*10;
                val2 = (val2 - (int)val2)*10;
            }
            if (digits1 > 0 && digits2 > 0)
            {
                return (int)val1 < (int)val2;
            }
            return (digits2 > 0);
        }

        template<class RaIt> void operator()(RaIt b, RaIt e)
    {
        std::sort(b, e, lexiSmaller);
    }
};

struct notbad
{
        static int up_10pow(int n) {
          int ans = 1;
          while (ans < n) ans *= 10;
          return ans;
        }

        static bool compare(int v1, int v2) {
           int ceil1 = up_10pow(v1), ceil2 = up_10pow(v2);
           while ( ceil1 != 0 && ceil2 != 0) {
              if (v1 / ceil1  < v2 / ceil2) return true;
              else if (v1 / ceil1 > v2 / ceil2) return false;
              ceil1 /= 10;
              ceil2 /= 10;
           }
           if (v1 < v2) return true;
           return false;
        }

        template<class RaIt> void operator()(RaIt b, RaIt e)
    {
        std::sort(b, e, compare);
    }
};

Ответ 5

Я полагаю, что следующее работает как функция сравнения сортировки для целых положительных чисел, если используемый целочисленный тип существенно уже, чем тип double (например, 32-разрядный int и 64-бит double), а log10 возвращает точно правильные результаты для точных степеней 10 (что делает хорошая реализация):

static const double limit = .5 * (log(INT_MAX) - log(INT_MAX-1));

double lx = log10(x);
double ly = log10(y);
double fx = lx - floor(lx);  // Get the mantissa of lx.
double fy = ly - floor(ly);  // Get the mantissa of ly.
return fabs(fx - fy) < limit ? lx < ly : fx < fy;

Это работает, сравнивая мантиссы логарифмов. Мантиссы являются дробными частями логарифма, и они указывают значение значащих цифр числа без величины (например, логарифмы 31, 3.1 и 310 имеют точно такую ​​же мантиссу).

Цель fabs(fx - fy) < limit заключается в том, чтобы допускать ошибки при вводе логарифма, которые происходят из-за того, что реализации log10 несовершенны и потому что формат с плавающей запятой заставляет некоторую ошибку. (Целые части логарифмов 31 и 310 используют разные числа битов, поэтому для знаменателей осталось несколько бит, поэтому они заканчиваются округленными до немного разных значений.) Пока целочисленный тип существенно более узкий чем тип double, вычисленный limit будет намного больше, чем ошибка в log10. Таким образом, тест fabs(fx - fy) < limit по существу говорит о том, будет ли два рассчитанных мантиссы равными, если точно рассчитать.

Если мантиссы отличаются, они указывают лексикографический порядок, поэтому возвращаем fx < fy. Если они равны, то целочисленная часть логарифма сообщает нам порядок, поэтому мы возвращаем lx < ly.

Просто проверить, возвращает ли log10 правильные результаты для каждой степени в десять, поскольку их так мало. Если это не так, можно легко настроить: Вставить if (1-fx < limit) fx = 0; if (1-fu < limit) fy = 0;. Это позволяет, когда log10 возвращает что-то вроде 4.99999... когда оно должно было вернуть 5.

Этот метод имеет то преимущество, что не использует циклы или деления (что отнимает много времени на многих процессорах).

Ответ 6

Задача звучит как естественное соответствие для варианта MSD Radix Sort with padding (http://en.wikipedia.org/wiki/Radix_sort).

Зависит от того, сколько кода вы хотите бросить на него. Простой код, как показывают другие, - это сложность O (log n), в то время как полностью оптимизированная сортировка счисления будет O (kn).

Ответ 7

Компактное решение, если все ваши числа неотрицательны, и они достаточно малы, так что их умножение на 10 не вызывает переполнения:

template<class T> bool lex_less(T a, T b) {
  unsigned la = 1, lb = 1;
  for (T t = a; t > 9; t /= 10) ++la;
  for (T t = b; t > 9; t /= 10) ++lb;
  const bool ll = la < lb;
  while (la > lb) { b *= 10; ++lb; }
  while (lb > la) { a *= 10; ++la; }
  return a == b ? ll : a < b;
}

Запустите его следующим образом:

#include <iostream>
#include <algorithm>
int main(int, char **) {
  unsigned short input[] = { 100, 21 , 22 , 99 , 1  , 927 };
  unsigned input_size = sizeof(input) / sizeof(input[0]);
  std::sort(input, input + input_size, lex_less<unsigned short>);
  for (unsigned i = 0; i < input_size; ++i) {
    std::cout << ' ' << input[i];
  }
  std::cout << std::endl;
  return 0;
}

Ответ 8

Вы можете попробовать использовать оператор%, чтобы дать вам доступ к каждой отдельной цифре, например, 121% 100 даст вам первую цифру и проверьте этот способ, но вам нужно будет найти способ обойти тот факт, что у них разные размеры.

Итак, найдите максимальное значение в массиве. Я не знаю, может ли функция, созданная вами для этого встраивать вас, попробовать.

int Max (int* pdata,int size)
 {
int temp_max =0 ;

for (int i =0 ; i < size ; i++)
 {
    if (*(pdata+i) > temp_max)
    {
        temp_max = *(pdata+i);

    }
 }
 return temp_max;
 }

Эта функция вернет число цифр в числе

 int Digit_checker(int n)
{
 int num_digits = 1;

while (true)
{
    if ((n % 10) == n)
        return num_digits;
    num_digits++;
    n = n/10;
}
return num_digits;
}

Пусть число цифр в макс равно n. Как только вы откроете цикл for в формате   for (int я = 1; я < n; я ++)

то вы можете пройти через свой и использовать "data [i]% (10 ^ (n-i))", чтобы получить доступ к первой цифре, затем сортировать, а затем на следующей итерации вы получите доступ ко второй цифре. Я не знаю, как вы их сортируете, хотя.

Это не работает для отрицательных чисел, и вам придется обойти данные [i]% (10 ^ (n-i)), возвращающиеся к номерам с меньшим количеством цифр, чем max

Ответ 9

Перегрузка < оператор для сравнения двух целых чисел лексикографически. Для каждого целого найдем наименьшее 10 ^ k, которое не меньше заданного целого. Затем сравнивайте цифры один за другим.

class CmpIntLex {
int up_10pow(int n) {
  int ans = 1;
  while (ans < n) ans *= 10;
  return ans;
}
public: 
bool operator ()(int v1, int v2) {
   int ceil1 = up_10pow(v1), ceil2 = up_10pow(v2);
   while ( ceil1 != 0 && ceil2 != 0) {
      if (v1 / ceil1  < v2 / ceil2) return true;
      else if (v1 / ceil1 > v2 / ceil2) return false;
      ceil1 /= 10; 
      ceil2 /= 10;
   }
   if (v1 < v2) return true;
   return false;
}
int main() {
vector<int> vi = {12,45,12134,85};
sort(vi.begin(), vi.end(), CmpIntLex());
}

Ответ 10

В то время как некоторые другие ответы здесь (Lightness's, notbad's) уже показывают неплохой код, я считаю, что могу добавить одно решение, которое может быть более эффективным (так как в каждом цикле оно не требует ни деления, ни мощности, но требует арифметики с плавающей запятой, что снова может сделать его медленным и, возможно, неточным для больших чисел):

#include <algorithm>
#include <iostream>
#include <assert.h>

// method taken from http://stackoverflow.com/a/1489873/671366
template <class T>
int numDigits(T number)
{
    int digits = 0;
    if (number < 0) digits = 1; // remove this line if '-' counts as a digit
    while (number) {
        number /= 10;
        digits++;
    }
    return digits;
}

bool lexiSmaller(int i1, int i2)
{
    int digits1 = numDigits(i1);
    int digits2 = numDigits(i2);

    double val1 = i1/pow(10.0, digits1-1);
    double val2 = i2/pow(10.0, digits2-1);

    while (digits1 > 0 && digits2 > 0 && (int)val1 == (int)val2)
    {
        digits1--;
        digits2--;
        val1 = (val1 - (int)val1)*10;
        val2 = (val2 - (int)val2)*10;
    }
    if (digits1 > 0 && digits2 > 0)
    {
        return (int)val1 < (int)val2;
    }
    return (digits2 > 0);
}


int main(int argc, char* argv[])
{
    // just testing whether the comparison function works as expected:
    assert (lexiSmaller(1, 100));
    assert (!lexiSmaller(100, 1));
    assert (lexiSmaller(100, 22));
    assert (!lexiSmaller(22, 100));
    assert (lexiSmaller(927, 99));
    assert (!lexiSmaller(99, 927));
    assert (lexiSmaller(1, 927));
    assert (!lexiSmaller(927, 1));
    assert (lexiSmaller(21, 22));
    assert (!lexiSmaller(22, 21));
    assert (lexiSmaller(22, 99));
    assert (!lexiSmaller(99, 22));

    // use the comparison function for the actual sorting:
    int input[] = { 100 , 21 , 22 , 99 , 1 ,927 };
    std::sort(&input[0], &input[5], lexiSmaller);
    std::cout << "sorted: ";
    for (int i=0; i<6; ++i)
    {
        std::cout << input[i];
        if (i<5)
        {
            std::cout << ", ";
        }
    }
    std::cout << std::endl;
    return 0;
}

Хотя я должен признать, что еще не тестировал производительность.

Ответ 11

Вот немое решение, которое не использует никаких трюков с плавающей запятой. Это почти то же самое, что и сравнение строк, но не использует строку для каждого слова, также не обрабатывает отрицательные числа, чтобы добавить раздел вверху...

bool comp(int l, int r)
{
  int lv[10] = {}; // probably possible to get this from numeric_limits
  int rv[10] = {};

  int lc = 10; // ditto
  int rc = 10;
  while (l || r)
  {
    if (l)
    {
      auto t = l / 10;
      lv[--lc] = l - (t * 10);
      l = t;
    }
    if (r)
    {
      auto t = r / 10;
      rv[--rc] = r - (t * 10);
      r = t;
    }
  }
  while (lc < 10 && rc < 10)
  {
    if (lv[lc] == rv[rc])
    {
      lc++;
      rc++;
    }
    else
      return lv[lc] < rv[rc];
  }
  return lc > rc;
}

Это быстро, и я уверен, что можно сделать это быстрее, но он работает, и он настолько тупой, чтобы понять...

EDIT: я съел много кода, но вот сравнение всех решений до сих пор.

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <random>
#include <vector>
#include <utility>
#include <cmath>
#include <cassert>
#include <chrono>

std::pair<int, int> lexicographic_pair_helper(int p, int maxDigits)
{
  int digits = std::log10(p);
  int l = p*std::pow(10, maxDigits-digits);
  return {l, p};
}

bool l_comp(int l, int r)
{
  int lv[10] = {}; // probably possible to get this from numeric_limits
  int rv[10] = {};

  int lc = 10; // ditto
  int rc = 10;
  while (l || r)
  {
    if (l)
    {
      auto t = l / 10;
      lv[--lc] = l - (t * 10);
      l = t;
    }
    if (r)
    {
      auto t = r / 10;
      rv[--rc] = r - (t * 10);
      r = t;
    }
  }
  while (lc < 10 && rc < 10)
  {
    if (lv[lc] == rv[rc])
    {
      lc++;
      rc++;
    }
    else
      return lv[lc] < rv[rc];
  }
  return lc > rc;
}

int up_10pow(int n) {
  int ans = 1;
  while (ans < n) ans *= 10;
  return ans;
}
bool l_comp2(int v1, int v2) {
  int n1 = up_10pow(v1), n2 = up_10pow(v2);
  while ( v1 != 0 && v2 != 0) {
    if (v1 / n1  < v2 / n2) return true;
    else if (v1 / n1 > v2 / n2) return false;
    v1 /= 10;
    v2 /= 10;
    n1 /= 10;
    n2 /= 10;
  }
  if (v1 == 0 && v2 != 0) return true;
  return false;
}

int main()
{
  std::vector<int> numbers;
  {
    constexpr int number_of_elements = 1E6;
    std::random_device rd;
    std::mt19937 gen( rd() );
    std::uniform_int_distribution<> dist;
    for(int i = 0; i < number_of_elements; ++i) numbers.push_back( dist(gen) );
  }

  std::vector<int> lo(numbers);
  std::vector<int> dyp(numbers);
  std::vector<int> nim(numbers);
  std::vector<int> nb(numbers);

  std::cout << "starting..." << std::endl;

  {

    auto start = std::chrono::high_resolution_clock::now();
    /**
    * Sorts the array lexicographically.
    *
    * The trick is that we have to compare digits left-to-right
    * (considering typical Latin decimal notation) and that each of
    * two numbers to compare may have a different number of digits.
    *
    * This probably isn't very efficient, so I wouldn't do it on
    * "millions" of numbers. But, it works...
    */
    std::sort(
    std::begin(lo),
              std::end(lo),
              [](int lhs, int rhs) -> bool {
                // Returns true if lhs < rhs
                // Returns false otherwise
                const auto BASE      = 10;
                const bool LHS_FIRST = true;
                const bool RHS_FIRST = false;
                const bool EQUAL     = false;


                // There no point in doing anything at all
                // if both inputs are the same; strict-weak
                // ordering requires that we return `false`
                // in this case.
                if (lhs == rhs) {
                  return EQUAL;
                }

                // Compensate for sign
                if (lhs < 0 && rhs < 0) {
                  // When both are negative, sign on its own yields
                  // no clear ordering between the two arguments.
                  //
                  // Remove the sign and continue as for positive
                  // numbers.
                  lhs *= -1;
                  rhs *= -1;
                }
                else if (lhs < 0) {
                  // When the LHS is negative but the RHS is not,
              // consider the LHS "first" always as we wish to
              // prioritise the leading '-'.
              return LHS_FIRST;
                }
                else if (rhs < 0) {
                  // When the RHS is negative but the LHS is not,
              // consider the RHS "first" always as we wish to
              // prioritise the leading '-'.
              return RHS_FIRST;
                }

                // Counting the number of digits in both the LHS and RHS
                // arguments is *almost* trivial.
                const auto lhs_digits = (
                lhs == 0
                ? 1
                : std::ceil(std::log(lhs+1)/std::log(BASE))
                );

                const auto rhs_digits = (
                rhs == 0
                ? 1
                : std::ceil(std::log(rhs+1)/std::log(BASE))
                );

                // Now we loop through the positions, left-to-right,
              // calculating the digit at these positions for each
              // input, and comparing them numerically. The
              // lexicographic nature of the sorting comes from the
              // fact that we are doing this per-digit comparison
              // rather than considering the input value as a whole.
              const auto max_pos = std::max(lhs_digits, rhs_digits);
              for (auto pos = 0; pos < max_pos; pos++) {
                if (lhs_digits - pos == 0) {
                  // Ran out of digits on the LHS;
                  // prioritise the shorter input
                  return LHS_FIRST;
                }
                else if (rhs_digits - pos == 0) {
                  // Ran out of digits on the RHS;
                  // prioritise the shorter input
                  return RHS_FIRST;
                }
                else {
                  const auto lhs_x = (lhs / static_cast<decltype(BASE)>(std::pow(BASE, lhs_digits - 1 - pos))) % BASE;
                  const auto rhs_x = (rhs / static_cast<decltype(BASE)>(std::pow(BASE, rhs_digits - 1 - pos))) % BASE;

                  if (lhs_x < rhs_x)
                    return LHS_FIRST;
                  else if (rhs_x < lhs_x)
                    return RHS_FIRST;
                }
              }

              // If we reached the end and everything still
              // matches up, then something probably went wrong
              // as I'd have expected to catch this in the tests
              // for equality.
              assert("Unknown case encountered");
              }
              );

    auto end = std::chrono::high_resolution_clock::now();
    auto elapsed = end - start;
    std::cout << "Lightness: " << elapsed.count() << '\n';
  }

  {
    auto start = std::chrono::high_resolution_clock::now();

    auto max = *std::max_element(begin(dyp), end(dyp));
    int maxDigits = std::log10(max);

    std::vector<std::pair<int,int>> temp;
    temp.reserve(dyp.size());
    for(auto const& e : dyp) temp.push_back( lexicographic_pair_helper(e, maxDigits) );

    std::sort(begin(temp), end(temp), [](std::pair<int, int> const& l, std::pair<int, int> const& r)
    { if(l.first < r.first) return true; if(l.first > r.first) return false; return l.second < r.second; });

    auto end = std::chrono::high_resolution_clock::now();
    auto elapsed = end - start;
    std::cout << "Dyp: " << elapsed.count() << '\n';
  }

  {
    auto start = std::chrono::high_resolution_clock::now();
    std::sort (nim.begin(), nim.end(), l_comp);
    auto end = std::chrono::high_resolution_clock::now();
    auto elapsed = end - start;
    std::cout << "Nim: " << elapsed.count() << '\n';
  }

//   {
//     auto start = std::chrono::high_resolution_clock::now();
//     std::sort (nb.begin(), nb.end(), l_comp2);
//     auto end = std::chrono::high_resolution_clock::now();
//     auto elapsed = end - start;
//     std::cout << "notbad: " << elapsed.count() << '\n';
//   }

  std::cout << (nim == lo) << std::endl;
  std::cout << (nim == dyp) << std::endl;
  std::cout << (lo == dyp) << std::endl;
//   std::cout << (lo == nb) << std::endl;
}