Ответ 1
Как насчет:
public static int[] ConvertToArrayOfDigits(int value)
{
int size = DetermineDigitCount(value);
int[] digits = new int[size];
for (int index = size - 1; index >= 0; index--)
{
digits[index] = value % 10;
value = value / 10;
}
return digits;
}
private static int DetermineDigitCount(int x)
{
// This bit could be optimised with a binary search
return x < 10 ? 1
: x < 100 ? 2
: x < 1000 ? 3
: x < 10000 ? 4
: x < 100000 ? 5
: x < 1000000 ? 6
: x < 10000000 ? 7
: x < 100000000 ? 8
: x < 1000000000 ? 9
: 10;
}
Обратите внимание, что это не справится с отрицательными числами... вам это нужно?
РЕДАКТИРОВАТЬ: Здесь версия, которая запоминает результаты ниже 10000, как было предложено Эриком. Если вы можете абсолютно гарантировать, что вы не измените содержимое возвращаемого массива, вы можете удалить вызов Clone
. Он также имеет удобное свойство сократить количество проверок, чтобы определить длину "больших" чисел, а маленькие числа будут проходить через этот код один раз:)
private static readonly int[][] memoizedResults = new int[10000][];
public static int[] ConvertToArrayOfDigits(int value)
{
if (value < 10000)
{
int[] memoized = memoizedResults[value];
if (memoized == null) {
memoized = ConvertSmall(value);
memoizedResults[value] = memoized;
}
return (int[]) memoized.Clone();
}
// We know that value >= 10000
int size = value < 100000 ? 5
: value < 1000000 ? 6
: value < 10000000 ? 7
: value < 100000000 ? 8
: value < 1000000000 ? 9
: 10;
return ConvertWithSize(value, size);
}
private static int[] ConvertSmall(int value)
{
// We know that value < 10000
int size = value < 10 ? 1
: value < 100 ? 2
: value < 1000 ? 3 : 4;
return ConvertWithSize(value, size);
}
private static int[] ConvertWithSize(int value, int size)
{
int[] digits = new int[size];
for (int index = size - 1; index >= 0; index--)
{
digits[index] = value % 10;
value = value / 10;
}
return digits;
}
Обратите внимание, что это не пытается быть потокобезопасным на данный момент. Возможно, вам потребуется добавить барьер памяти, чтобы убедиться, что запись в memoized результаты не видна до тех пор, пока записи внутри каждого результата не будут видны. Я отказался от попыток рассуждать об этих вещах, если я не обязан. Я уверен, что вы можете сделать это без блокировки с усилием, но вы действительно должны заставить кого-то очень умного сделать это, если вам действительно нужно.
EDIT: Я только что понял, что "большой" случай может использовать "маленький" случай - разделить большое количество на два небольших и использовать полученные мемуары. Я дам это после обеда и напишу бенчмарк...
EDIT: Хорошо, готов к огромному количеству кода? Я понял, что для равномерно случайных чисел, по крайней мере, вы получите "большие" цифры гораздо чаще, чем маленькие, поэтому вам нужно оптимизировать для этого. Конечно, это может быть не для реальных данных, но в любом случае... это означает, что теперь я делаю свои тесты размера в обратном порядке, надеясь на большие числа в первую очередь.
У меня есть ориентир для исходного кода, простая memoization, а затем чрезвычайно разворачиваемый код.
Результаты (в мс):
Simple: 3168
SimpleMemo: 3061
UnrolledMemo: 1204
код:
using System;
using System.Diagnostics;
class DigitSplitting
{
static void Main()
{
Test(Simple);
Test(SimpleMemo);
Test(UnrolledMemo);
}
const int Iterations = 10000000;
static void Test(Func<int, int[]> candidate)
{
Random rng = new Random(0);
Stopwatch sw = Stopwatch.StartNew();
for (int i = 0; i < Iterations; i++)
{
candidate(rng.Next());
}
sw.Stop();
Console.WriteLine("{0}: {1}",
candidate.Method.Name, (int) sw.ElapsedMilliseconds);
}
#region Simple
static int[] Simple(int value)
{
int size = DetermineDigitCount(value);
int[] digits = new int[size];
for (int index = size - 1; index >= 0; index--)
{
digits[index] = value % 10;
value = value / 10;
}
return digits;
}
private static int DetermineDigitCount(int x)
{
// This bit could be optimised with a binary search
return x < 10 ? 1
: x < 100 ? 2
: x < 1000 ? 3
: x < 10000 ? 4
: x < 100000 ? 5
: x < 1000000 ? 6
: x < 10000000 ? 7
: x < 100000000 ? 8
: x < 1000000000 ? 9
: 10;
}
#endregion Simple
#region SimpleMemo
private static readonly int[][] memoizedResults = new int[10000][];
public static int[] SimpleMemo(int value)
{
if (value < 10000)
{
int[] memoized = memoizedResults[value];
if (memoized == null) {
memoized = ConvertSmall(value);
memoizedResults[value] = memoized;
}
return (int[]) memoized.Clone();
}
// We know that value >= 10000
int size = value >= 1000000000 ? 10
: value >= 100000000 ? 9
: value >= 10000000 ? 8
: value >= 1000000 ? 7
: value >= 100000 ? 6
: 5;
return ConvertWithSize(value, size);
}
private static int[] ConvertSmall(int value)
{
// We know that value < 10000
return value >= 1000 ? new[] { value / 1000, (value / 100) % 10,
(value / 10) % 10, value % 10 }
: value >= 100 ? new[] { value / 100, (value / 10) % 10,
value % 10 }
: value >= 10 ? new[] { value / 10, value % 10 }
: new int[] { value };
}
private static int[] ConvertWithSize(int value, int size)
{
int[] digits = new int[size];
for (int index = size - 1; index >= 0; index--)
{
digits[index] = value % 10;
value = value / 10;
}
return digits;
}
#endregion
#region UnrolledMemo
private static readonly int[][] memoizedResults2 = new int[10000][];
private static readonly int[][] memoizedResults3 = new int[10000][];
static int[] UnrolledMemo(int value)
{
if (value < 10000)
{
return (int[]) UnclonedConvertSmall(value).Clone();
}
if (value >= 1000000000)
{
int[] ret = new int[10];
int firstChunk = value / 100000000;
ret[0] = firstChunk / 10;
ret[1] = firstChunk % 10;
value -= firstChunk * 100000000;
int[] secondChunk = ConvertSize4(value / 10000);
int[] thirdChunk = ConvertSize4(value % 10000);
ret[2] = secondChunk[0];
ret[3] = secondChunk[1];
ret[4] = secondChunk[2];
ret[5] = secondChunk[3];
ret[6] = thirdChunk[0];
ret[7] = thirdChunk[1];
ret[8] = thirdChunk[2];
ret[9] = thirdChunk[3];
return ret;
}
else if (value >= 100000000)
{
int[] ret = new int[9];
int firstChunk = value / 100000000;
ret[0] = firstChunk;
value -= firstChunk * 100000000;
int[] secondChunk = ConvertSize4(value / 10000);
int[] thirdChunk = ConvertSize4(value % 10000);
ret[1] = secondChunk[0];
ret[2] = secondChunk[1];
ret[3] = secondChunk[2];
ret[4] = secondChunk[3];
ret[5] = thirdChunk[0];
ret[6] = thirdChunk[1];
ret[7] = thirdChunk[2];
ret[8] = thirdChunk[3];
return ret;
}
else if (value >= 10000000)
{
int[] ret = new int[8];
int[] firstChunk = ConvertSize4(value / 10000);
int[] secondChunk = ConvertSize4(value % 10000);
ret[0] = firstChunk[0];
ret[1] = firstChunk[0];
ret[2] = firstChunk[0];
ret[3] = firstChunk[0];
ret[4] = secondChunk[0];
ret[5] = secondChunk[1];
ret[6] = secondChunk[2];
ret[7] = secondChunk[3];
return ret;
}
else if (value >= 1000000)
{
int[] ret = new int[7];
int[] firstChunk = ConvertSize4(value / 10000);
int[] secondChunk = ConvertSize4(value % 10000);
ret[0] = firstChunk[1];
ret[1] = firstChunk[2];
ret[2] = firstChunk[3];
ret[3] = secondChunk[0];
ret[4] = secondChunk[1];
ret[5] = secondChunk[2];
ret[6] = secondChunk[3];
return ret;
}
else if (value >= 100000)
{
int[] ret = new int[6];
int[] firstChunk = ConvertSize4(value / 10000);
int[] secondChunk = ConvertSize4(value % 10000);
ret[0] = firstChunk[2];
ret[1] = firstChunk[3];
ret[2] = secondChunk[0];
ret[3] = secondChunk[1];
ret[4] = secondChunk[2];
ret[5] = secondChunk[3];
return ret;
}
else
{
int[] ret = new int[5];
int[] chunk = ConvertSize4(value % 10000);
ret[0] = value / 10000;
ret[1] = chunk[0];
ret[2] = chunk[1];
ret[3] = chunk[2];
ret[4] = chunk[3];
return ret;
}
}
private static int[] UnclonedConvertSmall(int value)
{
int[] ret = memoizedResults2[value];
if (ret == null)
{
ret = value >= 1000 ? new[] { value / 1000, (value / 100) % 10,
(value / 10) % 10, value % 10 }
: value >= 100 ? new[] { value / 100, (value / 10) % 10,
value % 10 }
: value >= 10 ? new[] { value / 10, value % 10 }
: new int[] { value };
memoizedResults2[value] = ret;
}
return ret;
}
private static int[] ConvertSize4(int value)
{
int[] ret = memoizedResults3[value];
if (ret == null)
{
ret = new[] { value / 1000, (value / 100) % 10,
(value / 10) % 10, value % 10 };
memoizedResults3[value] = ret;
}
return ret;
}
#endregion UnrolledMemo
}