Ответ 1
Вот несколько предложенных псевдокодов. Простая версия первая, более надежная версия позже (только для того, чтобы помочь отделить принцип от неудобств). Простая версия:
// Assume the plane is given as the equation dot(N,X) + d = 0, where N is a (not
// neccessarily normalized) plane normal, and d is a scalar. Any way the plane is given -
// DistFromPlane should just let the input vector into the plane equation.
vector3d planeN;
float planeD;
float DistFromPlane( vector3d P)
{
// if N is not normalized this is *not* really the distance,
// but the computations work just the same.
return dot(planeN,P) + planeD;
}
bool GetSegmentPlaneIntersection( vector3d P1, vector3d P2, vector3d& outP)
{
float d1 = DistFromPlane(P1),
d2 = DistFromPlane(P2);
if (d1*d2 > 0) // points on the same side of plane
return false;
float t = d1 / (d1 - d2); // 'time' of intersection point on the segment
outP = P1 + t * (P2 - P1);
return true;
}
void TrianglePlaneIntersection(vector3d triA, vector3d triB, vector3d triC,
vector3dArray& outSegTips)
{
vector3d IntersectionPoint;
if( GetSegmentPlaneIntersection( triA, triB, IntersectionPoint))
outSegTips.Add(IntersectionPoint);
if( GetSegmentPlaneIntersection( triB, triC, IntersectionPoint))
outSegTips.Add(IntersectionPoint);
if( GetSegmentPlaneIntersection( triC, triA, IntersectionPoint))
outSegTips.Add(IntersectionPoint);
}
Теперь добавим некоторую надежность:
[Edit: Добавлено явное рассмотрение случая одной вершины на плоскости]
vector3d planeN;
float planeD;
float DistFromPlane( vector3d P)
{
return dot(planeN,P) + planeD;
}
void GetSegmentPlaneIntersection( vector3d P1, vector3d P2, vector3dArray& outSegTips)
{
float d1 = DistFromPlane(P1),
d2 = DistFromPlane(P2);
bool bP1OnPlane = (abs(d1) < eps),
bP2OnPlane = (abs(d2) < eps);
if (bP1OnPlane)
outSegTips.Add(P1);
if (bP2OnPlane)
outSegTips.Add(P2);
if (bP1OnPlane && bP2OnPlane)
return;
if (d1*d2 > eps) // points on the same side of plane
return;
float t = d1 / (d1 - d2); // 'time' of intersection point on the segment
outSegTips.Add( P1 + t * (P2 - P1) );
}
void TrianglePlaneIntersection(vector3d triA, vector3d triB, vector3d triC,
vector3dArray& outSegTips)
{
GetSegmentPlaneIntersection( triA, triB, outSegTips));
GetSegmentPlaneIntersection( triB, triC, outSegTips));
GetSegmentPlaneIntersection( triC, triA, outSegTips));
RemoveDuplicates(outSegTips); // not listed here - obvious functionality
}
Надеюсь, это дает представление, но все же существует немало потенциальных оптимизаций. Если, например, вы вычисляете эти пересечения для каждого треугольника в большой сетке, вы можете вычислять и кэшировать DistanceFromPlane один раз на вершину и просто извлекать его для каждого края, в котором участвует вершина. Также может быть более продвинутое кеширование, в зависимости от вашего сценария и представления данных.