График пунктирной линии прерван данными (по аналогии с контурным сюжетом)
Я застрял с (надеюсь) простой проблемой.
Моя цель - нарисовать пунктирную линию, прерванную данными (а не только текстом).
![Example of how I would imagine a possible result]()
Как только я обнаружил, что для создания пунктирной линии через linestyle = 'dashed', любая помощь считается помещенной между тире.
Нечто похожее на маркировку уже существует с Matplotlib - как я увидел в демонстрацию контурной линии.
![Matplotlib Contour Demo]()
Update:
Ссылка вопроса упомянутая Ричардом в комментариях, была очень полезной, но не 100%, как я упоминал через комментарий.
В настоящее время я делаю это так:
line_string2 = '-10 ' + u"\u00b0" +"C"
l, = ax1.plot(T_m10_X_Values,T_m10_Y_Values)
pos = [(T_m10_X_Values[-2]+T_m10_X_Values[-1])/2., (T_m10_Y_Values[-2]+T_m10_Y_Values[-1])/2.]
# transform data points to screen space
xscreen = ax1.transData.transform(zip(T_m10_Y_Values[-2::],T_m10_Y_Values[-2::]))
rot = np.rad2deg(np.arctan2(*np.abs(np.gradient(xscreen)[0][0][::-1])))
ltex = plt.text(pos[0], pos[1], line_string2, size=9, rotation=rot, color='b',ha="center", va="bottom",bbox = dict(ec='1',fc='1', alpha=0.5))
Здесь вы можете увидеть моментальный снимок результата. Минус 20 ° C без BBox.
![введите описание изображения здесь]()
Ответы
Ответ 1
Быстрый и грязный ответ с помощью annotate
:
import matplotlib.pyplot as plt
import numpy as np
x = list(reversed([1.81,1.715,1.78,1.613,1.629,1.714,1.62,1.738,1.495,1.669,1.57,1.877,1.385]))
y = [0.924,0.915,0.914,0.91,0.909,0.905,0.905,0.893,0.886,0.881,0.873,0.873,0.844]
def plot_with_text(x, y, text, text_count=None):
text_count = (2 * (len(x) / len(text))) if text_count is None else text_count
fig, ax = plt.subplots(1,1)
l, = ax.plot(x,y)
text_size = len(text) * 10
idx_step = len(x) / text_count
for idx_num in range(text_count):
idx = int(idx_num * idx_step)
text_pos = [x[idx], y[idx]]
xscreen = ax.transData.transform(zip(x[max(0, idx-1):min(len(x), idx+2)], y[max(0, idx-1):min(len(y), idx+2)]))
a = np.abs(np.gradient(xscreen)[0][0])
rot = np.rad2deg(np.arctan2(*a)) - 90
ax.annotate(text, xy=text_pos, color="r", bbox=dict(ec="1", fc="1", alpha=0.9), rotation=rot, ha="center", va="center")
plot_with_text(x, y, "test")
Урожайность:
![plot]()
Вы можете играть со смещениями для получения более приятных результатов.