Python и OpenCV. Как определить все (заполненные) круги/круглые объекты в изображении?
Я пытаюсь создать программу, которая открывает изображение, просматривает его для кругов/круглых фигур и возвращает координаты, чтобы я мог использовать функцию cv.Circle
для рисования кругов по обнаруженному кругу.
Мой вопрос: как получить координаты/радиусы окружностей, обнаруженных на изображении, используя cv.HoughCircles()
?
Используя эту страницу, я узнал, как определить круги (мне потребовалось много времени, чтобы узнать, так как я не понимаю таких терминов, как порог и документация OpenCV для Python действительно бедна, почти нет). К сожалению, на этой странице он не показывал, как извлекать информацию о каждом круге, обнаруженном из созданного CvMat
. Как извлечь эту информацию/есть ли другой способ (например, с помощью MemoryStorage()
)?
Это мой код:
import cv, opencv
def main():
im = cv.LoadImageM("Proba.jpg")
gray = cv.CreateImage(cv.GetSize(im), 8, 1)
edges = cv.CreateImage(cv.GetSize(im), 8, 1)
cv.CvtColor(im, gray, cv.CV_BGR2GRAY)
cv.Canny(gray, edges, 50, 200, 3)
cv.Smooth(gray, gray, cv.CV_GAUSSIAN, 9, 9)
storage = cv.CreateMat(im.rows, 1, cv.CV_32FC3)
cv.HoughCircles(edges, storage, cv.CV_HOUGH_GRADIENT, 2, gray.height/4, 200, 100)
# Now, supposing it found circles, how do I extract the information?
print storage.r
if __name__ == '__main__':
main()
Кроме того, какое значение должны иметь последние два параметра HoughCircles
, чтобы я мог обнаружить действительно маленькие круги (например, 3 мм на экране)?
Спасибо всем за ваше время и силы, пытаясь помочь мне!
Изображение, с которым я работаю, это: ![enter image description here]()
Ответы
Ответ 1
Последние два параметра передаются на cv.Canny()
, что означает, что cv.Canny()
вызывается из cv.HoughCircles()
. Я не слишком уверен в этом.
Что касается размеров, то это выглядит как следующие два параметра (после 200, 100)
по умолчанию 0
, что может означать, что все размеры обнаружены.
Из источника примера С++ я также могу предположить, что вам не нужно делать обнаружение края Canny:
#include <cv.h>
#include <highgui.h>
#include <math.h>
using namespace cv;
int main(int argc, char** argv)
{
Mat img, gray;
if( argc != 2 && !(img=imread(argv[1], 1)).data)
return -1;
cvtColor(img, gray, CV_BGR2GRAY);
// smooth it, otherwise a lot of false circles may be detected
GaussianBlur( gray, gray, Size(9, 9), 2, 2 );
vector<Vec3f> circles;
HoughCircles(gray, circles, CV_HOUGH_GRADIENT,
2, gray->rows/4, 200, 100 );
for( size_t i = 0; i < circles.size(); i++ )
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// draw the circle center
circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
// draw the circle outline
circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
namedWindow( "circles", 1 );
imshow( "circles", img );
return 0;
}
Вы пытаетесь преобразовать этот код на С++ в Python, я предполагаю?
for( size_t i = 0; i < circles.size(); i++ )
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// draw the circle center
circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
// draw the circle outline
circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
Насколько я могу судить, объекты CvMat
являются итерабельными, как и список:
for circle in storage:
radius = circle[2]
center = (circle[0], circle[1])
cv.Circle(im, center, radius, (0, 0, 255), 3, 8, 0)
У меня нет тестовых образов, поэтому не надо смириться с тем, что это работает. Ваш полный код может быть:
import cv
def main():
im = cv.LoadImage('Proba.jpg')
gray = cv.CreateImage(cv.GetSize(im), 8, 1)
edges = cv.CreateImage(cv.GetSize(im), 8, 1)
cv.CvtColor(im, gray, cv.CV_BGR2GRAY)
#cv.Canny(gray, edges, 20, 55, 3)
storage = cv.CreateMat(im.width, 1, cv.CV_32FC3)
cv.HoughCircles(edges, storage, cv.CV_HOUGH_GRADIENT, 5, 25, 200, 10)
for i in xrange(storage.width - 1):
radius = storage[i, 2]
center = (storage[i, 0], storage[i, 1])
print (radius, center)
cv.Circle(im, center, radius, (0, 0, 255), 3, 8, 0)
cv.NamedWindow('Circles')
cv.ShowImage('Circles', im)
cv.WaitKey(0)
if __name__ == '__main__':
main()
Ответ 2
Посмотрите мой ответ на этот вопрос для некоторого рабочего исходного кода (это C, но я использовал компилятор С++, потому что он более мягкий).
Сначала я обрезал ваше изображение (чтобы получить что-то удобное для работы) и применил порог к вашему изображению, чтобы отделить передний план от фона:
![enter image description here]()
Затем я прямо применил исходный код к пороговому изображению. Вот текст:
center x: 330 y: 507 A: 13 B: 4
center x: 78 y: 507 A: 22 B: 4
center x: 270 y: 503 A: 8 B: 8
center x: 222 y: 493 A: 21 B: 17
center x: 140 y: 484 A: 17 B: 18
center x: 394 y: 478 A: 17 B: 15
center x: 311 y: 468 A: 8 B: 8
center x: 107 y: 472 A: 12 B: 12
center x: 7 y: 472 A: 6 B: 19
center x: 337 y: 442 A: 10 B: 9
center x: 98 y: 432 A: 10 B: 10
center x: 357 y: 421 A: 7 B: 7
center x: 488 y: 429 A: 22 B: 23
center x: 411 y: 400 A: 13 B: 12
center x: 42 y: 400 A: 11 B: 12
center x: 365 y: 391 A: 14 B: 13
center x: 141 y: 396 A: 19 B: 19
center x: 9 y: 379 A: 8 B: 18
center x: 192 y: 365 A: 10 B: 9
center x: 347 y: 340 A: 20 B: 20
center x: 8 y: 305 A: 7 B: 13
center x: 95 y: 308 A: 23 B: 24
center x: 318 y: 297 A: 15 B: 15
center x: 159 y: 285 A: 10 B: 10
center x: 412 y: 291 A: 26 B: 27
center x: 504 y: 278 A: 6 B: 16
center x: 233 y: 277 A: 20 B: 20
center x: 459 y: 256 A: 15 B: 15
center x: 7 y: 239 A: 6 B: 9
center x: 377 y: 239 A: 14 B: 14
center x: 197 y: 228 A: 12 B: 12
center x: 302 y: 237 A: 12 B: 22
center x: 98 y: 224 A: 24 B: 23
center x: 265 y: 203 A: 18 B: 18
center x: 359 y: 202 A: 22 B: 22
center x: 149 y: 201 A: 20 B: 21
center x: 219 y: 169 A: 7 B: 9
center x: 458 y: 172 A: 20 B: 20
center x: 497 y: 157 A: 13 B: 21
center x: 151 y: 125 A: 18 B: 17
center x: 39 y: 109 A: 9 B: 10
center x: 81 y: 116 A: 20 B: 19
center x: 249 y: 104 A: 14 B: 13
center x: 429 y: 76 A: 23 B: 24
center x: 493 y: 33 A: 11 B: 10
center x: 334 y: 26 A: 12 B: 14
И вот выходное изображение:
![enter image description here]()
Основная проблема заключается в том, что круги, которые слились вместе, вообще не обнаружены. Код был первоначально написан для обнаружения только заполненных эллипсов, поэтому вы, вероятно, можете решить эту проблему, изменив код.
Ответ 3
Аналогичное решение в python. Первоначально я попытался запустить обнаружение контура, описанное здесь, но это не сработало. Поэтому сначала нужно было установить некоторые пороговые значения. Код порога здесь:
fimg = misc.imread("boubles.jpg")
gimg = color.colorconv.rgb2grey(fimg)
vimg = []
for l in gimg:
l2 = sign(l - 0.50) / 2 + 0.5
vimg.append(l2)
img = array(vimg)
imshow(img)
С этим я получаю изображение следующим образом:
![thresholded image]()
И после обнаружения края, описанного в ссылке выше, я получил следующее:
![find contours]()
Если вы проверите код, вы обнаружите, что очень легко подсчитать объекты. Единственная проблема заключается в том, что некоторые пузырьки подсчитываются дважды. И я думаю, что функция порога может быть улучшена. Но я предлагаю использовать skimage, он прост в использовании и имеет хорошие образцы на их веб-странице.