Алгоритм нахождения максимальной разности в массиве чисел
У меня есть массив из нескольких миллионов чисел.
double* const data = new double (3600000);
Мне нужно выполнить итерацию по массиву и найти диапазон (наибольшее значение в массиве минус наименьшее значение). Однако есть улов. Я только хочу найти диапазон, где наименьшие и наибольшие значения находятся в пределах 1000 выборок друг друга.
Поэтому мне нужно найти максимум: диапазон (данные + 0, данные + 1000), диапазон (данные + 1, данные + 1001), диапазон (данные + 2, данные + 1002),...., (данные + 3599000, данные + 3600000).
Надеюсь, это имеет смысл. В принципе, я мог бы сделать это, как описано выше, но я ищу более эффективный алгоритм, если он существует. Я думаю, что вышеупомянутый алгоритм O (n), но я чувствую, что его можно оптимизировать. Идея, с которой я играю, состоит в том, чтобы следить за последними максимумами и минимумами и как далеко назад, а затем только отступать, когда это необходимо.
Я буду кодировать это на С++, но хороший алгоритм в псевдокоде будет просто прекрасен. Кроме того, если этот номер, который я пытаюсь найти, имеет имя, мне бы хотелось узнать, что это такое.
Спасибо.
Ответы
Ответ 1
Алгоритм, который вы описываете, действительно O (N), но я считаю, что константа слишком высока. Другим решением, которое выглядит разумным, является использование алгоритма O (N * log (N)) следующим образом:
* create sorted container (std::multiset) of first 1000 numbers
* in loop (j=1, j<(3600000-1000); ++j)
- calculate range
- remove from the set number which is now irrelevant (i.e. in index *j - 1* of the array)
- add to set new relevant number (i.e. in index *j+1000-1* of the array)
Я считаю, что он должен быть быстрее, потому что константа намного ниже.
Ответ 2
Этот тип вопроса относится к ветки алгоритмов, называемых потоковыми алгоритмами. Это исследование проблем, которые требуют не только решения O (n), но также должны работать за один проход по данным. данные вводятся как поток в алгоритм, алгоритм не может сохранить все данные, а затем, а затем он потерян навсегда. алгоритм должен получить некоторый ответ о данных, например, как минимум или медианный.
В частности, вы ищете максимум (или чаще всего в литературе - минимум) в окне над потоком.
Здесь представлена презентация в статье в которой упоминается это проблема как подпункт того, к чему они стремятся. это может дать вам некоторые идеи.
Я думаю, что схема решения - это что-то вроде этого - поддерживайте окно над потоком, где на каждом шаге один элемент вставлен в окно, а один удаляется с другой стороны (скользящее окно). Элементы, которые вы на самом деле сохраняете в памяти, - это не все из 1000 элементов в окне, а выбранные представители, которые будут хорошими кандидатами на то, чтобы быть минимальным (или максимальным).
прочитайте статью. он abit комплекс, но после 2-3 чтения вы можете получить его.
Ответ 3
Это хорошее приложение min-queue - очередь (First-In, First-Out = FIFO), которая может одновременно отслеживать минимальный элемент, который она содержит, с амортизированными константами, время обновления. Конечно, максимальная очередь - это в основном одно и то же.
Как только вы создадите эту структуру данных, вы можете рассмотреть CurrentMax (из последних 1000 элементов) минус CurrentMin, сохранить это как BestSoFar, а затем нажать новое значение и поместить старое значение и снова проверить. Таким образом, обновляйте BestSoFar, пока окончательное значение не станет решением вашего вопроса. Каждый отдельный шаг принимает амортизированное постоянное время, поэтому все это линейно, и реализация, о которой я знаю, имеет хорошую скалярную константу (она быстрая).
Я не знаю никакой документации по min-queue - это структура данных, которую я разработал в сотрудничестве с коллегой. Вы можете реализовать его, внутренне отслеживая двоичное дерево наименьших элементов в каждой смежной подпоследовательности ваших данных. Это упрощает проблему, что вы только поместите данные с одного конца структуры.
Если вас интересует более подробная информация, я могу попытаться их предоставить. Я подумывал написать эту структуру данных как документ для arxiv. Также обратите внимание, что Tarjan и другие ранее достигли более мощной структуры min-deque, которая будет работать здесь, но реализация намного сложнее. Вы можете google для "mindeque" прочитать о Tarjan et al. работа.
Ответ 4
Идея алгоритма:
Возьмите первые 1000 значений данных и отсортируйте их
Последний в сортировке - первый - диапазон (данные + 0, данные + 999).
Затем удалите из сортировки кучу первый элемент с данными значения [0]
и добавьте данные элемента [1000]
Теперь последнее в сортировке - первое - диапазон (данные + 1, данные + 1000).
Повторить до конца
// This should run in (DATA_LEN - RANGE_WIDTH)log(RANGE_WIDTH)
#include <set>
#include <algorithm>
using namespace std;
const int DATA_LEN = 3600000;
double* const data = new double (DATA_LEN);
....
....
const int RANGE_WIDTH = 1000;
double range = new double(DATA_LEN - RANGE_WIDTH);
multiset<double> data_set;
data_set.insert(data[i], data[RANGE_WIDTH]);
for (int i = 0 ; i < DATA_LEN - RANGE_WIDTH - 1 ; i++)
{
range[i] = *data_set.end() - *data_set.begin();
multiset<double>::iterator iter = data_set.find(data[i]);
data_set.erase(iter);
data_set.insert(data[i+1]);
}
range[i] = *data_set.end() - *data_set.begin();
// range now holds the values you seek
Вероятно, вы должны проверить это на 1 ошибкой, но идея есть.
Ответ 5
std::multiset<double> range;
double currentmax = 0.0;
for (int i = 0; i < 3600000; ++i)
{
if (i >= 1000)
range.erase(range.find(data[i-1000]));
range.insert(data[i]);
if (i >= 999)
currentmax = max(currentmax, *range.rbegin());
}
Примечание непроверенный код.
Изменить: исправлена ошибка "один за другим".
Ответ 6
- читать первые 1000 номеров.
- создайте связанный список из 1000 элементов, который отслеживает текущий номер 1000.
- создать массив элементов с тысячами элементов указателей на узлы связанного списка, отображение 1-1.
- сортировать массив указателей на основе связанных значений node. Это приведет к изменению массива, но сохранит связанный список без изменений.
- теперь вы можете рассчитать диапазон для первых 1000 чисел, изучив первый и последний элементы массива указателей.
- удалите первый вставленный элемент, который является либо головкой, либо хвостом, в зависимости от того, как вы создали свой связанный список. Используя значение node, выполните двоичный поиск в массиве указателей, чтобы найти указатель node, который нужно удалить, и переместите массив, чтобы удалить его.
- добавьте 1001-й элемент в связанный список и вставьте в него указатель в правильной позиции в массиве, выполнив один шаг сортировки вставки. Это позволит сохранить сортировку массива.
- теперь у вас есть мин. и макс. значение чисел от 1 до 1001 и может рассчитать диапазон, используя первый и последний элемент массива указателей.
- теперь должно быть очевидно, что вам нужно сделать для остальной части массива.
Алгоритм должен быть O (n), так как удаление и вставка ограничены log (1e3), а все остальное занимает постоянное время.
Ответ 7
Я решил посмотреть, какой самый эффективный алгоритм, который я мог бы решить для решения этой проблемы, - это использовать фактический код и фактические тайминги. Сначала я создал простое решение, которое отслеживает min/max для предыдущих n записей с использованием кругового буфера и тестовый жгут для измерения скорости. В простом решении каждое значение данных сравнивается с набором значений min/max, так что о проверках count_size * count (где размер окна в исходном вопросе равен 1000, а счет 3600000).
Затем я подумал о том, как сделать это быстрее. Во-первых, я создал решение, которое использовало очередь fifo для хранения значений window_size и связанного списка для хранения значений в порядке возрастания, где каждый node в связанном списке также был node в очереди. Чтобы обработать значение данных, элемент в конце fifo был удален из связанного списка и очереди. Новое значение было добавлено в начало очереди, и для поиска позиции в связанном списке использовался линейный поиск. Значения min и max могут быть прочитаны с начала и конца связанного списка. Это было быстро, но не масштабировалось бы с увеличением window_size (т.е. линейно).
Поэтому я решил добавить в систему двоичное дерево, чтобы попытаться ускорить поисковую часть алгоритма. Конечные тайминги для window_size = 1000 и count = 3600000:
Simple: 106875
Quite Complex: 1218
Complex: 1219
который был как ожидаемым, так и неожиданным. Ожидалось, что использование отсортированного связанного списка помогло, неожиданно в том, что накладные расходы на наличие собственного балансировочного дерева не компенсировали преимущество более быстрого поиска. Я попробовал последние два с увеличенным размером окна и обнаружил, что они всегда были почти идентичны с размером окна 100000.
Что все идет, чтобы показать, что теоретизация об алгоритмах - это одно, а реализация их - нечто другое.
В любом случае, для тех, кого это интересует, вот код, который я написал (там совсем немного!):
Range.h:
#include <algorithm>
#include <iostream>
#include <ctime>
using namespace std;
// Callback types.
typedef void (*OutputCallback) (int min, int max);
typedef int (*GeneratorCallback) ();
// Declarations of the test functions.
clock_t Simple (int, int, GeneratorCallback, OutputCallback);
clock_t QuiteComplex (int, int, GeneratorCallback, OutputCallback);
clock_t Complex (int, int, GeneratorCallback, OutputCallback);
main.cpp:
#include "Range.h"
int
checksum;
// This callback is used to get data.
int CreateData ()
{
return rand ();
}
// This callback is used to output the results.
void OutputResults (int min, int max)
{
//cout << min << " - " << max << endl;
checksum += max - min;
}
// The program entry point.
void main ()
{
int
count = 3600000,
window = 1000;
srand (0);
checksum = 0;
std::cout << "Simple: Ticks = " << Simple (count, window, CreateData, OutputResults) << ", checksum = " << checksum << std::endl;
srand (0);
checksum = 0;
std::cout << "Quite Complex: Ticks = " << QuiteComplex (count, window, CreateData, OutputResults) << ", checksum = " << checksum << std::endl;
srand (0);
checksum = 0;
std::cout << "Complex: Ticks = " << Complex (count, window, CreateData, OutputResults) << ", checksum = " << checksum << std::endl;
}
Simple.cpp:
#include "Range.h"
// Function to actually process the data.
// A circular buffer of min/max values for the current window is filled
// and once full, the oldest min/max pair is sent to the output callback
// and replaced with the newest input value. Each value inputted is
// compared against all min/max pairs.
void ProcessData
(
int count,
int window,
GeneratorCallback input,
OutputCallback output,
int *min_buffer,
int *max_buffer
)
{
int
i;
for (i = 0 ; i < window ; ++i)
{
int
value = input ();
min_buffer [i] = max_buffer [i] = value;
for (int j = 0 ; j < i ; ++j)
{
min_buffer [j] = min (min_buffer [j], value);
max_buffer [j] = max (max_buffer [j], value);
}
}
for ( ; i < count ; ++i)
{
int
index = i % window;
output (min_buffer [index], max_buffer [index]);
int
value = input ();
min_buffer [index] = max_buffer [index] = value;
for (int k = (i + 1) % window ; k != index ; k = (k + 1) % window)
{
min_buffer [k] = min (min_buffer [k], value);
max_buffer [k] = max (max_buffer [k], value);
}
}
output (min_buffer [count % window], max_buffer [count % window]);
}
// A simple method of calculating the results.
// Memory management is done here outside of the timing portion.
clock_t Simple
(
int count,
int window,
GeneratorCallback input,
OutputCallback output
)
{
int
*min_buffer = new int [window],
*max_buffer = new int [window];
clock_t
start = clock ();
ProcessData (count, window, input, output, min_buffer, max_buffer);
clock_t
end = clock ();
delete [] max_buffer;
delete [] min_buffer;
return end - start;
}
QuiteComplex.cpp:
#include "Range.h"
template <class T>
class Range
{
private:
// Class Types
// Node Data
// Stores a value and its position in various lists.
struct Node
{
Node
*m_queue_next,
*m_list_greater,
*m_list_lower;
T
m_value;
};
public:
// Constructor
// Allocates memory for the node data and adds all the allocated
// nodes to the unused/free list of nodes.
Range
(
int window_size
) :
m_nodes (new Node [window_size]),
m_queue_tail (m_nodes),
m_queue_head (0),
m_list_min (0),
m_list_max (0),
m_free_list (m_nodes)
{
for (int i = 0 ; i < window_size - 1 ; ++i)
{
m_nodes [i].m_list_lower = &m_nodes [i + 1];
}
m_nodes [window_size - 1].m_list_lower = 0;
}
// Destructor
// Tidy up allocated data.
~Range ()
{
delete [] m_nodes;
}
// Function to add a new value into the data structure.
void AddValue
(
T value
)
{
Node
*node = GetNode ();
// clear links
node->m_queue_next = 0;
// set value of node
node->m_value = value;
// find place to add node into linked list
Node
*search;
for (search = m_list_max ; search ; search = search->m_list_lower)
{
if (search->m_value < value)
{
if (search->m_list_greater)
{
node->m_list_greater = search->m_list_greater;
search->m_list_greater->m_list_lower = node;
}
else
{
m_list_max = node;
}
node->m_list_lower = search;
search->m_list_greater = node;
}
}
if (!search)
{
m_list_min->m_list_lower = node;
node->m_list_greater = m_list_min;
m_list_min = node;
}
}
// Accessor to determine if the first output value is ready for use.
bool RangeAvailable ()
{
return !m_free_list;
}
// Accessor to get the minimum value of all values in the current window.
T Min ()
{
return m_list_min->m_value;
}
// Accessor to get the maximum value of all values in the current window.
T Max ()
{
return m_list_max->m_value;
}
private:
// Function to get a node to store a value into.
// This function gets nodes from one of two places:
// 1. From the unused/free list
// 2. From the end of the fifo queue, this requires removing the node from the list and tree
Node *GetNode ()
{
Node
*node;
if (m_free_list)
{
// get new node from unused/free list and place at head
node = m_free_list;
m_free_list = node->m_list_lower;
if (m_queue_head)
{
m_queue_head->m_queue_next = node;
}
m_queue_head = node;
}
else
{
// get node from tail of queue and place at head
node = m_queue_tail;
m_queue_tail = node->m_queue_next;
m_queue_head->m_queue_next = node;
m_queue_head = node;
// remove node from linked list
if (node->m_list_lower)
{
node->m_list_lower->m_list_greater = node->m_list_greater;
}
else
{
m_list_min = node->m_list_greater;
}
if (node->m_list_greater)
{
node->m_list_greater->m_list_lower = node->m_list_lower;
}
else
{
m_list_max = node->m_list_lower;
}
}
return node;
}
// Member Data.
Node
*m_nodes,
*m_queue_tail,
*m_queue_head,
*m_list_min,
*m_list_max,
*m_free_list;
};
// A reasonable complex but more efficent method of calculating the results.
// Memory management is done here outside of the timing portion.
clock_t QuiteComplex
(
int size,
int window,
GeneratorCallback input,
OutputCallback output
)
{
Range <int>
range (window);
clock_t
start = clock ();
for (int i = 0 ; i < size ; ++i)
{
range.AddValue (input ());
if (range.RangeAvailable ())
{
output (range.Min (), range.Max ());
}
}
clock_t
end = clock ();
return end - start;
}
Complex.cpp:
#include "Range.h"
template <class T>
class Range
{
private:
// Class Types
// Red/Black tree node colours.
enum NodeColour
{
Red,
Black
};
// Node Data
// Stores a value and its position in various lists and trees.
struct Node
{
// Function to get the sibling of a node.
// Because leaves are stored as null pointers, it must be possible
// to get the sibling of a null pointer. If the object is a null pointer
// then the parent pointer is used to determine the sibling.
Node *Sibling
(
Node *parent
)
{
Node
*sibling;
if (this)
{
sibling = m_tree_parent->m_tree_less == this ? m_tree_parent->m_tree_more : m_tree_parent->m_tree_less;
}
else
{
sibling = parent->m_tree_less ? parent->m_tree_less : parent->m_tree_more;
}
return sibling;
}
// Node Members
Node
*m_queue_next,
*m_tree_less,
*m_tree_more,
*m_tree_parent,
*m_list_greater,
*m_list_lower;
NodeColour
m_colour;
T
m_value;
};
public:
// Constructor
// Allocates memory for the node data and adds all the allocated
// nodes to the unused/free list of nodes.
Range
(
int window_size
) :
m_nodes (new Node [window_size]),
m_queue_tail (m_nodes),
m_queue_head (0),
m_tree_root (0),
m_list_min (0),
m_list_max (0),
m_free_list (m_nodes)
{
for (int i = 0 ; i < window_size - 1 ; ++i)
{
m_nodes [i].m_list_lower = &m_nodes [i + 1];
}
m_nodes [window_size - 1].m_list_lower = 0;
}
// Destructor
// Tidy up allocated data.
~Range ()
{
delete [] m_nodes;
}
// Function to add a new value into the data structure.
void AddValue
(
T value
)
{
Node
*node = GetNode ();
// clear links
node->m_queue_next = node->m_tree_more = node->m_tree_less = node->m_tree_parent = 0;
// set value of node
node->m_value = value;
// insert node into tree
if (m_tree_root)
{
InsertNodeIntoTree (node);
BalanceTreeAfterInsertion (node);
}
else
{
m_tree_root = m_list_max = m_list_min = node;
node->m_tree_parent = node->m_list_greater = node->m_list_lower = 0;
}
m_tree_root->m_colour = Black;
}
// Accessor to determine if the first output value is ready for use.
bool RangeAvailable ()
{
return !m_free_list;
}
// Accessor to get the minimum value of all values in the current window.
T Min ()
{
return m_list_min->m_value;
}
// Accessor to get the maximum value of all values in the current window.
T Max ()
{
return m_list_max->m_value;
}
private:
// Function to get a node to store a value into.
// This function gets nodes from one of two places:
// 1. From the unused/free list
// 2. From the end of the fifo queue, this requires removing the node from the list and tree
Node *GetNode ()
{
Node
*node;
if (m_free_list)
{
// get new node from unused/free list and place at head
node = m_free_list;
m_free_list = node->m_list_lower;
if (m_queue_head)
{
m_queue_head->m_queue_next = node;
}
m_queue_head = node;
}
else
{
// get node from tail of queue and place at head
node = m_queue_tail;
m_queue_tail = node->m_queue_next;
m_queue_head->m_queue_next = node;
m_queue_head = node;
// remove node from tree
node = RemoveNodeFromTree (node);
RebalanceTreeAfterDeletion (node);
// remove node from linked list
if (node->m_list_lower)
{
node->m_list_lower->m_list_greater = node->m_list_greater;
}
else
{
m_list_min = node->m_list_greater;
}
if (node->m_list_greater)
{
node->m_list_greater->m_list_lower = node->m_list_lower;
}
else
{
m_list_max = node->m_list_lower;
}
}
return node;
}
// Rebalances the tree after insertion
void BalanceTreeAfterInsertion
(
Node *node
)
{
node->m_colour = Red;
while (node != m_tree_root && node->m_tree_parent->m_colour == Red)
{
if (node->m_tree_parent == node->m_tree_parent->m_tree_parent->m_tree_more)
{
Node
*uncle = node->m_tree_parent->m_tree_parent->m_tree_less;
if (uncle && uncle->m_colour == Red)
{
node->m_tree_parent->m_colour = Black;
uncle->m_colour = Black;
node->m_tree_parent->m_tree_parent->m_colour = Red;
node = node->m_tree_parent->m_tree_parent;
}
else
{
if (node == node->m_tree_parent->m_tree_less)
{
node = node->m_tree_parent;
LeftRotate (node);
}
node->m_tree_parent->m_colour = Black;
node->m_tree_parent->m_tree_parent->m_colour = Red;
RightRotate (node->m_tree_parent->m_tree_parent);
}
}
else
{
Node
*uncle = node->m_tree_parent->m_tree_parent->m_tree_more;
if (uncle && uncle->m_colour == Red)
{
node->m_tree_parent->m_colour = Black;
uncle->m_colour = Black;
node->m_tree_parent->m_tree_parent->m_colour = Red;
node = node->m_tree_parent->m_tree_parent;
}
else
{
if (node == node->m_tree_parent->m_tree_more)
{
node = node->m_tree_parent;
RightRotate (node);
}
node->m_tree_parent->m_colour = Black;
node->m_tree_parent->m_tree_parent->m_colour = Red;
LeftRotate (node->m_tree_parent->m_tree_parent);
}
}
}
}
// Adds a node into the tree and sorted linked list
void InsertNodeIntoTree
(
Node *node
)
{
Node
*parent = 0,
*child = m_tree_root;
bool
greater;
while (child)
{
parent = child;
child = (greater = node->m_value > child->m_value) ? child->m_tree_more : child->m_tree_less;
}
node->m_tree_parent = parent;
if (greater)
{
parent->m_tree_more = node;
// insert node into linked list
if (parent->m_list_greater)
{
parent->m_list_greater->m_list_lower = node;
}
else
{
m_list_max = node;
}
node->m_list_greater = parent->m_list_greater;
node->m_list_lower = parent;
parent->m_list_greater = node;
}
else
{
parent->m_tree_less = node;
// insert node into linked list
if (parent->m_list_lower)
{
parent->m_list_lower->m_list_greater = node;
}
else
{
m_list_min = node;
}
node->m_list_lower = parent->m_list_lower;
node->m_list_greater = parent;
parent->m_list_lower = node;
}
}
// Red/Black tree manipulation routine, used for removing a node
Node *RemoveNodeFromTree
(
Node *node
)
{
if (node->m_tree_less && node->m_tree_more)
{
// the complex case, swap node with a child node
Node
*child;
if (node->m_tree_less)
{
// find largest value in lesser half (node with no greater pointer)
for (child = node->m_tree_less ; child->m_tree_more ; child = child->m_tree_more)
{
}
}
else
{
// find smallest value in greater half (node with no lesser pointer)
for (child = node->m_tree_more ; child->m_tree_less ; child = child->m_tree_less)
{
}
}
swap (child->m_colour, node->m_colour);
if (child->m_tree_parent != node)
{
swap (child->m_tree_less, node->m_tree_less);
swap (child->m_tree_more, node->m_tree_more);
swap (child->m_tree_parent, node->m_tree_parent);
if (!child->m_tree_parent)
{
m_tree_root = child;
}
else
{
if (child->m_tree_parent->m_tree_less == node)
{
child->m_tree_parent->m_tree_less = child;
}
else
{
child->m_tree_parent->m_tree_more = child;
}
}
if (node->m_tree_parent->m_tree_less == child)
{
node->m_tree_parent->m_tree_less = node;
}
else
{
node->m_tree_parent->m_tree_more = node;
}
}
else
{
child->m_tree_parent = node->m_tree_parent;
node->m_tree_parent = child;
Node
*child_less = child->m_tree_less,
*child_more = child->m_tree_more;
if (node->m_tree_less == child)
{
child->m_tree_less = node;
child->m_tree_more = node->m_tree_more;
node->m_tree_less = child_less;
node->m_tree_more = child_more;
}
else
{
child->m_tree_less = node->m_tree_less;
child->m_tree_more = node;
node->m_tree_less = child_less;
node->m_tree_more = child_more;
}
if (!child->m_tree_parent)
{
m_tree_root = child;
}
else
{
if (child->m_tree_parent->m_tree_less == node)
{
child->m_tree_parent->m_tree_less = child;
}
else
{
child->m_tree_parent->m_tree_more = child;
}
}
}
if (child->m_tree_less)
{
child->m_tree_less->m_tree_parent = child;
}
if (child->m_tree_more)
{
child->m_tree_more->m_tree_parent = child;
}
if (node->m_tree_less)
{
node->m_tree_less->m_tree_parent = node;
}
if (node->m_tree_more)
{
node->m_tree_more->m_tree_parent = node;
}
}
Node
*child = node->m_tree_less ? node->m_tree_less : node->m_tree_more;
if (node->m_tree_parent->m_tree_less == node)
{
node->m_tree_parent->m_tree_less = child;
}
else
{
node->m_tree_parent->m_tree_more = child;
}
if (child)
{
child->m_tree_parent = node->m_tree_parent;
}
return node;
}
// Red/Black tree manipulation routine, used for rebalancing a tree after a deletion
void RebalanceTreeAfterDeletion
(
Node *node
)
{
Node
*child = node->m_tree_less ? node->m_tree_less : node->m_tree_more;
if (node->m_colour == Black)
{
if (child && child->m_colour == Red)
{
child->m_colour = Black;
}
else
{
Node
*parent = node->m_tree_parent,
*n = child;
while (parent)
{
Node
*sibling = n->Sibling (parent);
if (sibling && sibling->m_colour == Red)
{
parent->m_colour = Red;
sibling->m_colour = Black;
if (n == parent->m_tree_more)
{
LeftRotate (parent);
}
else
{
RightRotate (parent);
}
}
sibling = n->Sibling (parent);
if (parent->m_colour == Black &&
sibling->m_colour == Black &&
(!sibling->m_tree_more || sibling->m_tree_more->m_colour == Black) &&
(!sibling->m_tree_less || sibling->m_tree_less->m_colour == Black))
{
sibling->m_colour = Red;
n = parent;
parent = n->m_tree_parent;
continue;
}
else
{
if (parent->m_colour == Red &&
sibling->m_colour == Black &&
(!sibling->m_tree_more || sibling->m_tree_more->m_colour == Black) &&
(!sibling->m_tree_less || sibling->m_tree_less->m_colour == Black))
{
sibling->m_colour = Red;
parent->m_colour = Black;
break;
}
else
{
if (n == parent->m_tree_more &&
sibling->m_colour == Black &&
(sibling->m_tree_more && sibling->m_tree_more->m_colour == Red) &&
(!sibling->m_tree_less || sibling->m_tree_less->m_colour == Black))
{
sibling->m_colour = Red;
sibling->m_tree_more->m_colour = Black;
RightRotate (sibling);
}
else
{
if (n == parent->m_tree_less &&
sibling->m_colour == Black &&
(!sibling->m_tree_more || sibling->m_tree_more->m_colour == Black) &&
(sibling->m_tree_less && sibling->m_tree_less->m_colour == Red))
{
sibling->m_colour = Red;
sibling->m_tree_less->m_colour = Black;
LeftRotate (sibling);
}
}
sibling = n->Sibling (parent);
sibling->m_colour = parent->m_colour;
parent->m_colour = Black;
if (n == parent->m_tree_more)
{
sibling->m_tree_less->m_colour = Black;
LeftRotate (parent);
}
else
{
sibling->m_tree_more->m_colour = Black;
RightRotate (parent);
}
break;
}
}
}
}
}
}
// Red/Black tree manipulation routine, used for balancing the tree
void LeftRotate
(
Node *node
)
{
Node
*less = node->m_tree_less;
node->m_tree_less = less->m_tree_more;
if (less->m_tree_more)
{
less->m_tree_more->m_tree_parent = node;
}
less->m_tree_parent = node->m_tree_parent;
if (!node->m_tree_parent)
{
m_tree_root = less;
}
else
{
if (node == node->m_tree_parent->m_tree_more)
{
node->m_tree_parent->m_tree_more = less;
}
else
{
node->m_tree_parent->m_tree_less = less;
}
}
less->m_tree_more = node;
node->m_tree_parent = less;
}
// Red/Black tree manipulation routine, used for balancing the tree
void RightRotate
(
Node *node
)
{
Node
*more = node->m_tree_more;
node->m_tree_more = more->m_tree_less;
if (more->m_tree_less)
{
more->m_tree_less->m_tree_parent = node;
}
more->m_tree_parent = node->m_tree_parent;
if (!node->m_tree_parent)
{
m_tree_root = more;
}
else
{
if (node == node->m_tree_parent->m_tree_less)
{
node->m_tree_parent->m_tree_less = more;
}
else
{
node->m_tree_parent->m_tree_more = more;
}
}
more->m_tree_less = node;
node->m_tree_parent = more;
}
// Member Data.
Node
*m_nodes,
*m_queue_tail,
*m_queue_head,
*m_tree_root,
*m_list_min,
*m_list_max,
*m_free_list;
};
// A complex but more efficent method of calculating the results.
// Memory management is done here outside of the timing portion.
clock_t Complex
(
int count,
int window,
GeneratorCallback input,
OutputCallback output
)
{
Range <int>
range (window);
clock_t
start = clock ();
for (int i = 0 ; i < count ; ++i)
{
range.AddValue (input ());
if (range.RangeAvailable ())
{
output (range.Min (), range.Max ());
}
}
clock_t
end = clock ();
return end - start;
}