Keras, Как получить выход каждого слоя?
Я подготовил двоичную классификационную модель с CNN, и вот мой код
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (16, 16, 32)
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (8, 8, 64) = (2048)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2)) # define a binary classification problem
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
verbose=1,
validation_data=(x_test, y_test))
И здесь я хочу получить вывод каждого слоя, как TensorFlow, как я могу это сделать?
Ответы
Ответ 1
Вы можете легко получить выходные данные любого слоя, используя: model.layers[index].output
Для всех слоев используйте это:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs] # evaluation functions
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test, 1.]) for func in functors]
print layer_outs
Примечание. Чтобы смоделировать выпадение, используйте learning_phase
в качестве 1.
в layer_outs
, в противном случае используйте 0.
Изменить: (на основе комментариев)
K.function
создает тензорные функции theano/tenorflow, которые позже используются для получения выходных данных из символьного графа с учетом входных данных.
Теперь K.learning_phase()
требуется в качестве входных данных, так как многие слои Keras, такие как Dropout/Batchnomalization, зависят от него, чтобы изменить поведение во время обучения и тестирования.
Поэтому, если вы удалите слой исключения в своем коде, вы можете просто использовать:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functors = [K.function([inp], [out]) for out in outputs] # evaluation functions
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test]) for func in functors]
print layer_outs
Изменить 2: более оптимизировано
Я только что понял, что предыдущий ответ не настолько оптимизирован, так как для каждой оценки функции данные будут передаваться CPU-> память GPU, а также необходимо выполнить тензорные вычисления для нижних уровней сверх n-более.
Вместо этого это гораздо лучший способ, так как вам не нужно несколько функций, а одна функция, предоставляющая вам список всех выходных данных:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functor = K.function([inp, K.learning_phase()], outputs ) # evaluation function
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs
Ответ 2
С https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-intermediate-layer
Один простой способ - создать новую модель, которая выведет интересующие вас слои:
from keras.models import Model
model = ... # include here your original model
layer_name = 'my_layer'
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
В качестве альтернативы, вы можете создать функцию Keras, которая будет возвращать выходные данные определенного слоя при заданном входном сигнале, например:
from keras import backend as K
# with a Sequential model
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
Ответ 3
Я написал эту функцию для себя (в Jupyter), и она была вдохновлена ответом indraforyou. Он автоматически выведет на экран все выходы уровня. Ваши изображения должны иметь форму (x, y, 1), где 1 обозначает 1 канал. Вы просто вызываете plot_layer_outputs (...) для построения.
%matplotlib inline
import matplotlib.pyplot as plt
from keras import backend as K
def get_layer_outputs():
test_image = YOUR IMAGE GOES HERE!!!
outputs = [layer.output for layer in model.layers] # all layer outputs
comp_graph = [K.function([model.input]+ [K.learning_phase()], [output]) for output in outputs] # evaluation functions
# Testing
layer_outputs_list = [op([test_image, 1.]) for op in comp_graph]
layer_outputs = []
for layer_output in layer_outputs_list:
print(layer_output[0][0].shape, end='\n-------------------\n')
layer_outputs.append(layer_output[0][0])
return layer_outputs
def plot_layer_outputs(layer_number):
layer_outputs = get_layer_outputs()
x_max = layer_outputs[layer_number].shape[0]
y_max = layer_outputs[layer_number].shape[1]
n = layer_outputs[layer_number].shape[2]
L = []
for i in range(n):
L.append(np.zeros((x_max, y_max)))
for i in range(n):
for x in range(x_max):
for y in range(y_max):
L[i][x][y] = layer_outputs[layer_number][x][y][i]
for img in L:
plt.figure()
plt.imshow(img, interpolation='nearest')
Ответ 4
Основываясь на всех хороших ответах этой темы, я написал библиотеку для извлечения выходных данных каждого слоя. Он абстрагирует всю сложность и был разработан как можно более удобным для пользователя:
https://github.com/philipperemy/keract
Он обрабатывает почти все крайние случаи
Надеюсь, это поможет!
Ответ 5
После этого выглядит очень просто:
model.layers[idx].output
Выше - тензорный объект, поэтому вы можете его изменить, используя операции, которые могут быть применены к тензорному объекту.
Например, чтобы получить форму model.layers[idx].output.get_shape()
idx
- это индекс слоя, и вы можете найти его из model.summary()
Ответ 6
От: https://github.com/philipperemy/keras-visualize-activations/blob/master/read_activations.py
import keras.backend as K
def get_activations(model, model_inputs, print_shape_only=False, layer_name=None):
print('----- activations -----')
activations = []
inp = model.input
model_multi_inputs_cond = True
if not isinstance(inp, list):
# only one input! let wrap it in a list.
inp = [inp]
model_multi_inputs_cond = False
outputs = [layer.output for layer in model.layers if
layer.name == layer_name or layer_name is None] # all layer outputs
funcs = [K.function(inp + [K.learning_phase()], [out]) for out in outputs] # evaluation functions
if model_multi_inputs_cond:
list_inputs = []
list_inputs.extend(model_inputs)
list_inputs.append(0.)
else:
list_inputs = [model_inputs, 0.]
# Learning phase. 0 = Test mode (no dropout or batch normalization)
# layer_outputs = [func([model_inputs, 0.])[0] for func in funcs]
layer_outputs = [func(list_inputs)[0] for func in funcs]
for layer_activations in layer_outputs:
activations.append(layer_activations)
if print_shape_only:
print(layer_activations.shape)
else:
print(layer_activations)
return activations
Ответ 7
Хотел добавить это в качестве комментария (но у него недостаточно высокой репутации) к ответу @indraforyou, чтобы исправить проблему, упомянутую в комментарии @mathtick. Чтобы избежать исключения InvalidArgumentError: input_X:Y is both fed and fetched.
, просто замените строку outputs = [layer.output for layer in model.layers]
на outputs = [layer.output for layer in model.layers][1:]
, т.е.
адаптируясь под минимальный рабочий пример:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers][1:] # all layer outputs except first (input) layer
functor = K.function([inp, K.learning_phase()], outputs ) # evaluation function
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs
P.S. мои попытки пробовать такие вещи, как outputs = [layer.output for layer in model.layers[1:]]
, не сработали.
Ответ 8
Ну, другие ответы очень полны, но есть очень простой способ "увидеть", а не "получить" формы.
Просто сделайте model.summary()
. Он напечатает все слои и их выходные формы. "None" значения будут указывать на переменные размеры, а первое измерение будет размером пакета.
Ответ 9
Если у вас есть:
1- Керас предварительно обучен model
.
2- Введите x
как изображение или набор изображений. Разрешение изображения должно соответствовать размеру входного слоя. Например, 80 * 80 * 3 для каналов 3- (RGB).
3- Имя выхода layer
для получения активации. Например, слой "flatten_2". Это должно быть включено в переменную layer_names
, представляющее имя слоев данного model
.
4- batch_size
- необязательный аргумент.
Затем вы можете легко использовать функцию get_activation
, чтобы получить активацию выхода layer
для данного входа x
и предварительно обученного model
:
import six
import numpy as np
import keras.backend as k
from numpy import float32
def get_activations(x, model, layer, batch_size=128):
"""
Return the output of the specified layer for input 'x'. 'layer' is specified by layer index (between 0 and
'nb_layers - 1') or by name. The number of layers can be determined by counting the results returned by
calling 'layer_names'.
:param x: Input for computing the activations.
:type x: 'np.ndarray'. Example: x.shape = (80, 80, 3)
:param model: pre-trained Keras model. Including weights.
:type model: keras.engine.sequential.Sequential. Example: model.input_shape = (None, 80, 80, 3)
:param layer: Layer for computing the activations
:type layer: 'int' or 'str'. Example: layer = 'flatten_2'
:param batch_size: Size of batches.
:type batch_size: 'int'
:return: The output of 'layer', where the first dimension is the batch size corresponding to 'x'.
:rtype: 'np.ndarray'. Example: activations.shape = (1, 2000)
"""
layer_names = [layer.name for layer in model.layers]
if isinstance(layer, six.string_types):
if layer not in layer_names:
raise ValueError('Layer name %s is not part of the graph.' % layer)
layer_name = layer
elif isinstance(layer, int):
if layer < 0 or layer >= len(layer_names):
raise ValueError('Layer index %d is outside of range (0 to %d included).'
% (layer, len(layer_names) - 1))
layer_name = layer_names[layer]
else:
raise TypeError('Layer must be of type 'str' or 'int'.')
layer_output = model.get_layer(layer_name).output
layer_input = model.input
output_func = k.function([layer_input], [layer_output])
# Apply preprocessing
if x.shape == k.int_shape(model.input)[1:]:
x_preproc = np.expand_dims(x, 0)
else:
x_preproc = x
assert len(x_preproc.shape) == 4
# Determine shape of expected output and prepare array
output_shape = output_func([x_preproc[0][None, ...]])[0].shape
activations = np.zeros((x_preproc.shape[0],) + output_shape[1:], dtype=float32)
# Get activations with batching
for batch_index in range(int(np.ceil(x_preproc.shape[0] / float(batch_size)))):
begin, end = batch_index * batch_size, min((batch_index + 1) * batch_size, x_preproc.shape[0])
activations[begin:end] = output_func([x_preproc[begin:end]])[0]
return activations
Ответ 10
Если у вас есть один из следующих случаев:
- ошибка:
InvalidArgumentError: input_X:Y is both fed and fetched
- случай нескольких входов
Вам необходимо внести следующие изменения:
- добавить фильтр для входных слоев в переменную
outputs
- изменение миннора в цикле
functors
Минимальный пример:
from keras.engine.input_layer import InputLayer
inp = model.input
outputs = [layer.output for layer in model.layers if not isinstance(layer, InputLayer)]
functors = [K.function(inp + [K.learning_phase()], [x]) for x in outputs]
layer_outputs = [fun([x1, x2, xn, 1]) for fun in functors]