Получить значение предыдущей строки и вычислить новый столбец pandas python
Есть ли способ оглянуться на предыдущую строку и вычислить новую переменную? так что, если предыдущая строка является тем же самым случаем, что является (предыдущим изменением) - (текущее изменение) и привязывает его к предыдущему "ChangeEvent" в новых столбцах?
вот мой DataFrame
>>> df
ChangeEvent StartEvent case change open
0 Homeless Homeless 1 2014-03-08 00:00:00 2014-02-08
1 other Homeless 1 2014-04-08 00:00:00 2014-02-08
2 Homeless Homeless 1 2014-05-08 00:00:00 2014-02-08
3 Jail Homeless 1 2014-06-08 00:00:00 2014-02-08
4 Jail Jail 2 2014-06-08 00:00:00 2014-02-08
добавить столбцы
Jail Homeless case
0 6 1
0 30 1
0 0 1
... и т.д.
здесь находится df build
import pandas as pd
import datetime as DT
d = {'case' : pd.Series([1,1,1,1,2]),
'open' : pd.Series([DT.datetime(2014, 3, 2), DT.datetime(2014, 3, 2),DT.datetime(2014, 3, 2),DT.datetime(2014, 3, 2),DT.datetime(2014, 3, 2)]),
'change' : pd.Series([DT.datetime(2014, 3, 8), DT.datetime(2014, 4, 8),DT.datetime(2014, 5, 8),DT.datetime(2014, 6, 8),DT.datetime(2014, 6, 8)]),
'StartEvent' : pd.Series(['Homeless','Homeless','Homeless','Homeless','Jail']),
'ChangeEvent' : pd.Series(['Homeless','irrelivant','Homeless','Jail','Jail']),
'close' : pd.Series([DT.datetime(2015, 3, 2), DT.datetime(2015, 3, 2),DT.datetime(2015, 3, 2),DT.datetime(2015, 3, 2),DT.datetime(2015, 3, 2)])}
df=pd.DataFrame(d)
Ответы
Ответ 1
Способ получения предыдущего использует метод сдвига:
In [11]: df1.change.shift(1)
Out[11]:
0 NaT
1 2014-03-08
2 2014-04-08
3 2014-05-08
4 2014-06-08
Name: change, dtype: datetime64[ns]
Теперь вы можете вычесть эти столбцы. Примечание: это с 0.13.1 (у datetime в последнее время много работы, поэтому YMMV со старыми версиями).
In [12]: df1.change.shift(1) - df1.change
Out[12]:
0 NaT
1 -31 days
2 -30 days
3 -31 days
4 0 days
Name: change, dtype: timedelta64[ns]
Вы можете просто применить это к каждому случаю/группе:
In [13]: df.groupby('case')['change'].apply(lambda x: x.shift(1) - x)
Out[13]:
0 NaT
1 -31 days
2 -30 days
3 -31 days
4 NaT
dtype: timedelta64[ns]