Ответ 1
Прежде чем слепо предоставить данные компьютеру, это хорошая идея, чтобы посмотреть на это:
d <- read.csv("train.csv")
str(d)
# 'data.frame': 891 obs. of 12 variables:
# $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
# $ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
# $ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
# $ Name : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 417 581 ...
# $ Sex : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 2 1 1 ...
# $ Age : num 22 38 26 35 35 NA 54 2 27 14 ...
# $ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
# $ Parch : int 0 0 0 0 0 0 0 1 2 0 ...
# $ Ticket : Factor w/ 681 levels "110152","110413",..: 524 597 670 50 473 276 86 396 345 133 ...
# $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
# $ Cabin : Factor w/ 148 levels "","A10","A14",..: 1 83 1 57 1 1 131 1 1 1 ...
# $ Embarked : Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ...
summary(d)
Некоторые из переменных имеют слишком много значений, которые будут полезны (по крайней мере, в вашей первой модели): вы можете удалить имя, билет, каюту и пассажир. Вы также можете изменить некоторые числовые переменные (скажем, класс), на факторы, если он более значим.
Поскольку neuralnet
касается только количественных переменных,
вы можете преобразовать все качественные переменные (факторы)
к двоичным ("dummy") переменным, с функцией model.matrix
это одна из очень редких ситуаций
в котором R не выполняет преобразование для вас.
m <- model.matrix(
~ Survived + Pclass + Sex + Age + SibSp + Parch + Fare + Embarked,
data = d
)
head(m)
library(neuralnet)
r <- neuralnet(
Survived ~ Pclass + Sexmale + Age + SibSp + Parch + Fare + EmbarkedC + EmbarkedQ + EmbarkedS,
data=m, hidden=10, threshold=0.01
)