Pandas: добавление строки в фреймворк данных и указание его метки индекса
Можно ли указать индекс, который я хочу для новой строки, при добавлении строки в фреймворк?
В исходной документации представлен следующий пример:
In [1301]: df = DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
In [1302]: df
Out[1302]:
A B C D
0 -1.137707 -0.891060 -0.693921 1.613616
1 0.464000 0.227371 -0.496922 0.306389
2 -2.290613 -1.134623 -1.561819 -0.260838
3 0.281957 1.523962 -0.902937 0.068159
4 -0.057873 -0.368204 -1.144073 0.861209
5 0.800193 0.782098 -1.069094 -1.099248
6 0.255269 0.009750 0.661084 0.379319
7 -0.008434 1.952541 -1.056652 0.533946
In [1303]: s = df.xs(3)
In [1304]: df.append(s, ignore_index=True)
Out[1304]:
A B C D
0 -1.137707 -0.891060 -0.693921 1.613616
1 0.464000 0.227371 -0.496922 0.306389
2 -2.290613 -1.134623 -1.561819 -0.260838
3 0.281957 1.523962 -0.902937 0.068159
4 -0.057873 -0.368204 -1.144073 0.861209
5 0.800193 0.782098 -1.069094 -1.099248
6 0.255269 0.009750 0.661084 0.379319
7 -0.008434 1.952541 -1.056652 0.533946
8 0.281957 1.523962 -0.902937 0.068159
где новая строка автоматически получает индексную метку. Есть ли способ управлять новой меткой?
Ответы
Ответ 1
name
Серии становится index
строки в DataFrame:
In [99]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
In [100]: s = df.xs(3)
In [101]: s.name = 10
In [102]: df.append(s)
Out[102]:
A B C D
0 -2.083321 -0.153749 0.174436 1.081056
1 -1.026692 1.495850 -0.025245 -0.171046
2 0.072272 1.218376 1.433281 0.747815
3 -0.940552 0.853073 -0.134842 -0.277135
4 0.478302 -0.599752 -0.080577 0.468618
5 2.609004 -1.679299 -1.593016 1.172298
6 -0.201605 0.406925 1.983177 0.012030
7 1.158530 -2.240124 0.851323 -0.240378
10 -0.940552 0.853073 -0.134842 -0.277135
Ответ 2
df.loc выполнит задание:
>>> df = pd.DataFrame(np.random.randn(3, 2), columns=['A','B'])
>>> df
A B
0 -0.269036 0.534991
1 0.069915 -1.173594
2 -1.177792 0.018381
>>> df.loc[13] = df.loc[1]
>>> df
A B
0 -0.269036 0.534991
1 0.069915 -1.173594
2 -1.177792 0.018381
13 0.069915 -1.173594