Найти все подмножества длины k в массиве
Учитывая набор {1,2,3,4,5...n}
из n элементов, нам нужно найти все подмножества длины k.
Например, если n = 4 и k = 2, output
будет {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
.
Я даже не могу понять, как начать. Нам не нужно использовать встроенные библиотечные функции, такие как next_permutation и т.д.
Нужно использовать алгоритм и реализацию в C/С++ или Java.
Ответы
Ответ 1
Рекурсия - ваш друг для этой задачи.
Для каждого элемента - "угадать", если он находится в текущем подмножестве, и рекурсивно вызывать с предположением и меньшим надмножеством, из которого вы можете выбрать. Выполнение этого для "да" и "нет" догадок - приведет к появлению всех возможных подмножеств.
Ограничение себя на определенную длину можно легко сделать в предложении остановки.
Код Java:
private static void getSubsets(List<Integer> superSet, int k, int idx, Set<Integer> current,List<Set<Integer>> solution) {
//successful stop clause
if (current.size() == k) {
solution.add(new HashSet<>(current));
return;
}
//unseccessful stop clause
if (idx == superSet.size()) return;
Integer x = superSet.get(idx);
current.add(x);
//"guess" x is in the subset
getSubsets(superSet, k, idx+1, current, solution);
current.remove(x);
//"guess" x is not in the subset
getSubsets(superSet, k, idx+1, current, solution);
}
public static List<Set<Integer>> getSubsets(List<Integer> superSet, int k) {
List<Set<Integer>> res = new ArrayList<>();
getSubsets(superSet, k, 0, new HashSet<Integer>(), res);
return res;
}
Вызов с помощью:
List<Integer> superSet = new ArrayList<>();
superSet.add(1);
superSet.add(2);
superSet.add(3);
superSet.add(4);
System.out.println(getSubsets(superSet,2));
Уступит:
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
Ответ 2
Используйте бит-векторное представление набора и используйте алгоритм, аналогичный тому, что std:: next_permutation делает на 0000.1111 (n-k zeroes, k ones). Каждая перестановка соответствует подмножеству размера k.
Ответ 3
Проверьте мое решение
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Set;
public class Subset_K {
public static void main(String[]args)
{
Set<String> x;
int n=4;
int k=2;
int arr[]={1,2,3,4};
StringBuilder sb=new StringBuilder();
for(int i=1;i<=(n-k);i++)
sb.append("0");
for(int i=1;i<=k;i++)
sb.append("1");
String bin=sb.toString();
x=generatePerm(bin);
Set<ArrayList <Integer>> outer=new HashSet<ArrayList <Integer>>();
for(String s:x){
int dec=Integer.parseInt(s,2);
ArrayList<Integer> inner=new ArrayList<Integer>();
for(int j=0;j<n;j++){
if((dec&(1<<j))>0)
inner.add(arr[j]);
}
outer.add(inner);
}
for(ArrayList<?> z:outer){
System.out.println(z);
}
}
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
}
Я работаю над набором из 4 элементов для тестирования и с использованием k = 2. Я пытаюсь сначала создать двоичную строку, в которой установлены k бит и n-k бит не установлены. Теперь, используя эту строку, я нахожу все возможные перестановки этой строки. И затем, используя эти перестановки, я вывожу соответствующий элемент из набора. Было бы здорово, если бы кто-нибудь мог рассказать мне о сложности этой проблемы.
Ответ 4
Это python. Извините за испанский;)
from pprint import pprint
conjunto = [1,2,3,4, 5,6,7,8,9,10]
k = 3
lista = []
iteraciones = [0]
def subconjuntos(l, k):
if k == len(l):
if not l in lista:
lista.append(l)
return
for i in l:
aux = l[:]
aux.remove(i)
result = subconjuntos(aux, k)
iteraciones[0] += 1
if not result in lista and result:
lista.append( result)
subconjuntos(conjunto, k)
print (lista)
print ('cant iteraciones: ' + str(iteraciones[0]))
Ответ 5
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
vector<int> v;
vector<vector<int> > result;
void subset(int arr[],int k,int n,int idx){
if(idx==n)
return;
if(k==1){
for(int i=idx;i<n;i++)
{
v.push_back(arr[i]);
result.push_back(v);
v.pop_back();
}
}
for(int j=idx;j<n;j++) {
v.push_back(arr[j]);
subset(arr,k-1,n,j+1);
v.pop_back();
}
}
int main(){
int arr[] = {1,2,3,4,5,6,7};
int k = 4;
int n =sizeof(arr)/sizeof(arr[0]);
subset(arr,k,n,0);
for(int i = 0;i<result.size();i++)
{
for(int j = 0;j<result[i].size();j++)
{
cout << result[i][j] << " ";
}
cout << endl;
}
}
Ответ 6
Пожалуйста, проверьте мое решение: -
private static void printPermutations(List<Integer> list, int subSetSize) {
List<Integer> prefixList = new ArrayList<Integer>();
printPermutations(prefixList, list, subSetSize);
}
private static void printPermutations(List<Integer> prefixList, List<Integer> list, int subSetSize) {
if (prefixList.size() == subSetSize) {
System.out.println(prefixList);
} else {
for (int i = 0; i < list.size(); i++) {
Integer removed = list.remove(i);
prefixList.add(removed);
printPermutations(prefixList, list, subSetSize);
prefixList.remove(removed);
list.add(i, removed);
}
}
}
Это похоже на перестановки строк: -
private static void printPermutations(String str) {
printAllPermutations("", str);
}
private static void printAllPermutations(String prefix, String restOfTheString) {
int len = restOfTheString.length();
System.out.println(prefix);
for (int i = 0; i < len; i++) {
printAllPermutations(prefix + restOfTheString.charAt(i), restOfTheString.substring(0, i) + restOfTheString.substring(i + 1, len));
}
}
Ответ 7
Это реализация в F #:
// allSubsets: int -> int -> Set<Set<int>>
let rec allSubsets n k =
match n, k with
| _, 0 -> Set.empty.Add(Set.empty)
| 0, _ -> Set.empty
| n, k -> Set.union (Set.map (fun s -> Set.add n s) (allSubsets (n-1) (k-1)))
(allSubsets (n-1) k)
Вы можете попробовать его в F # REPL:
> allSubsets 3 2;;
val it : Set<Set<int>> = set [set [1; 2]; set [1; 3]; set [2; 3]]
> allSubsets 4 2;;
val it : Set<Set<int>> = set [set [1; 2]; set [1; 3]; set [1; 4]; set [2; 3]; set [2; 4]; set [3; 4]]
Этот класс Java реализует тот же алгоритм:
import java.util.HashSet;
import java.util.Set;
public class AllSubsets {
public static Set<Set<Integer>> allSubsets(int setSize, int subsetSize) {
if (subsetSize == 0) {
HashSet<Set<Integer>> result = new HashSet<>();
result.add(new HashSet<>());
return result;
}
if (setSize == 0) {
return new HashSet<>();
}
Set<Set<Integer>> sets1 = allSubsets((setSize - 1), (subsetSize - 1));
for (Set<Integer> set : sets1) {
set.add(setSize);
}
Set<Set<Integer>> sets2 = allSubsets((setSize - 1), subsetSize);
sets1.addAll(sets2);
return sets1;
}
}
Если вам не нравятся F # или Java, то посетите этот веб-сайт. В нем перечислены решения вашей конкретной проблемы на разных языках программирования:
http://rosettacode.org/wiki/Combinations
Ответ 8
Выполнение JavaScript:
var subsetArray = (function() {
return {
getResult: getResult
}
function getResult(array, n) {
function isBigEnough(value) {
return value.length === n;
}
var ps = [
[]
];
for (var i = 0; i < array.length; i++) {
for (var j = 0, len = ps.length; j < len; j++) {
ps.push(ps[j].concat(array[i]));
}
}
return ps.filter(isBigEnough);
}
})();
var arr = [1, 2, 3, 4,5,6,7,8,9];
console.log(subsetArray.getResult(arr,2));
Ответ 9
Вот итеративная версия в python. Суть его - функция increment_counters(), которая возвращает все возможные комбинации. Мы знаем, что его нужно называть C (n, r) раз.
def nchooser(n,r):
"""Calculate the n choose r manual way"""
import math
f = math.factorial
return f(n) / f(n-r) / f(r)
def increment_counters(rc,r,n):
"""This is the essense of the algorithm. It generates all possible indexes.
Ex: for n = 4, r = 2, rc will have values (0,1),(0,2),(0,3),(1,2),(1,3),(2,3).
You may have better understanding if you print all possible 35 values for
n = 7, r = 3."""
rc[r-1] += 1 # first increment the least significant counter
if rc[r-1] < n: # if it does not overflow, return
return
# overflow at the last counter may cause some of previous counters to overflow
# find where it stops (ex: in n=7,r=3 case, 1,2,3 will follow 0,5,6)
for i in range(r-2,-1,-1): # from r-2 to 0 inclusive
if rc[i] < i+n-r:
break
# we found that rc[i] will not overflow. So, increment it and reset the
# counters right to it.
rc[i] += 1
for j in range(i+1,r):
rc[j] = rc[j-1] + 1
def combinations(lst, r):
"""Return all different sub-lists of size r"""
n = len(lst)
rc = [ i for i in range(r) ] # initialize counters
res = []
for i in range(nchooser(n,r)): # increment the counters max possible times
res.append(tuple(map(lambda k: lst[k],rc)))
increment_counters(rc,r,n)
return res
Ответ 10
Вот версия Java, о которой, как я думаю, говорит Simple, с использованием двоичного представления всех наборов в наборе питания. Это похоже на то, как это сделал Абхирооп Саркар, но я думаю, что логический массив имеет больше смысла, чем строка, когда вы просто представляете двоичные значения.
private ArrayList<ArrayList<Object>> getSubsets(int m, Object[] objects){
// m = size of subset, objects = superset of objects
ArrayList<ArrayList<Object>> subsets = new ArrayList<>();
ArrayList<Integer> pot = new ArrayList<>();
int n = objects.length;
int p = 1;
if(m==0)
return subsets;
for(int i=0; i<=n; i++){
pot.add(p);
p*=2;
}
for(int i=1; i<p; i++){
boolean[] binArray = new boolean[n];
Arrays.fill(binArray, false);
int y = i;
int sum = 0;
for(int j = n-1; j>=0; j--){
int currentPot = pot.get(j);
if(y >= currentPot){
binArray[j] = true;
y -= currentPot;
sum++;
}
if(y<=0)
break;
}
if(sum==m){
ArrayList<Object> subsubset = new ArrayList<>();
for(int j=0; j < n; j++){
if(binArray[j]){
subsubset.add(objects[j]);
}
}
subsets.add(subsubset);
}
}
return subsets;
}
Ответ 11
Если вы ищете ответ шаблона Iterator, то здесь вы идете.
public static <T> Iterable<List<T>> getList(final Iterable<? extends T> list) {
List<List<T>> listOfList = new ArrayList<>();
for (T t: list)
listOfList.add(Collections.singletonList(t));
return listOfList;
}
public static <T> Iterable<List<T>> getIterable(final Iterable<? extends T> list, final int size) {
final List<T> vals = new ArrayList<>();
int numElements = 0;
for (T t : list) {
vals.add(t);
numElements++;
}
if (size == 1) {
return getList(vals);
}
if (size == numElements) {
return Collections.singletonList(vals);
}
return new Iterable<List<T>>() {
@Override
public Iterator<List<T>> iterator() {
return new Iterator<List<T>>() {
int currPos = 0;
Iterator<List<T>> nextIterator = getIterable(
vals.subList(this.currPos + 1, vals.size()), size - 1).iterator();
@Override
public boolean hasNext() {
if ((this.currPos < vals.size()-2) && (this.currPos+size < vals.size()))
return true;
return false;
}
@Override
public List<T> next() {
if (!nextIterator.hasNext()) {
this.currPos++;
nextIterator = getIterable(vals.subList(this.currPos+1, vals.size()), size-1).iterator();
}
final List<T> ret = new ArrayList<>(nextIterator.next());
ret.add(0, vals.get(this.currPos));
return ret;
}
};
}
};
}
Ответ 12
Еще одно интересное решение.
#include<bits/stdc++.h>
using namespace std;
long factorial(int n) { return (n==1|| n==0|| n < 0) ? 1 : n *factorial(n-1) ;}
void printS(int set[],int n,int k)
{
long noofsubset = factorial(n) / (factorial(n-k)*factorial(k));
bitset<32> z ((1 << (k)) - 1);
string s = z.to_string();
int i = 0;
while(i<noofsubset)
{
for (int j = 0; j < n;j++)
{
if(s[(32-n)+j] == '1')
cout << set[j]<<" ";
}
cout << endl;
next_permutation(s.begin(),s.end());
i++;
}
}
void printSubsetsOfArray(int input[], int size) {
int k = 3;
printS(input,size,k) ;
}