Ответ 1
Это решение без ggplot
, которое полагается на функцию plot
. Он также требует пакет rgeos
в дополнение к коду в OP:
РЕДАКТИРОВАТЬ Теперь, на 10% меньше зрительной боли
РЕДАКТИРОВАТЬ 2 Теперь с центроидами для восточной и западной половин
library(rgeos)
library(RColorBrewer)
# Get centroids of countries
theCents <- coordinates(world.map)
# extract the polygons objects
pl <- slot(world.map, "polygons")
# Create square polygons that cover the east (left) half of each country bbox
lpolys <- lapply(seq_along(pl), function(x) {
lbox <- bbox(pl[[x]])
lbox[1, 2] <- theCents[x, 1]
Polygon(expand.grid(lbox[1,], lbox[2,])[c(1,3,4,2,1),])
})
# Slightly different data handling
wmRN <- row.names(world.map)
n <- nrow([email protected])
[email protected][, c("growth", "category")] <- list(growth = 4*runif(n),
category = factor(sample(1:5, n, replace=TRUE)))
# Determine the intersection of each country with the respective "left polygon"
lPolys <- lapply(seq_along(lpolys), function(x) {
curLPol <- SpatialPolygons(list(Polygons(lpolys[x], wmRN[x])),
proj4string=CRS(proj4string(world.map)))
curPl <- SpatialPolygons(pl[x], proj4string=CRS(proj4string(world.map)))
theInt <- gIntersection(curLPol, curPl, id = wmRN[x])
theInt
})
# Create a SpatialPolygonDataFrame of the intersections
lSPDF <- SpatialPolygonsDataFrame(SpatialPolygons(unlist(lapply(lPolys,
slot, "polygons")), proj4string = CRS(proj4string(world.map))),
[email protected])
##########
## EDIT ##
##########
# Create a slightly less harsh color set
s_growth <- scale([email protected]$growth,
center = min([email protected]$growth), scale = max([email protected]$growth))
growthRGB <- colorRamp(c("red", "blue"))(s_growth)
growthCols <- apply(growthRGB, 1, function(x) rgb(x[1], x[2], x[3],
maxColorValue = 255))
catCols <- brewer.pal(nlevels([email protected]$category), "Pastel2")
# and plot
plot(world.map, col = growthCols, bg = "grey90")
plot(lSPDF, col = catCols[[email protected]$category], add = TRUE)
Возможно, кто-то может придумать хорошее решение, используя ggplot2
. Однако на основе этого ответа на вопрос о нескольких шкалах заполнения для одного графа ( "Вы не можете" ), решение ggplot2
представляется маловероятным без огранки (что может быть хорошим подходом, как это предложено в комментариях выше).
РЕДАКТИРОВАТЬ re: сопоставление центроидов половин с чем-то: Центроиды для восточных ( "левых" ) половин могут быть получены с помощью
coordinates(lSPDF)
Те, что для западной ( "правой" ) половины могут быть получены путем создания объекта rSPDF
аналогичным образом:
# Create square polygons that cover west (right) half of each country bbox
rpolys <- lapply(seq_along(pl), function(x) {
rbox <- bbox(pl[[x]])
rbox[1, 1] <- theCents[x, 1]
Polygon(expand.grid(rbox[1,], rbox[2,])[c(1,3,4,2,1),])
})
# Determine the intersection of each country with the respective "right polygon"
rPolys <- lapply(seq_along(rpolys), function(x) {
curRPol <- SpatialPolygons(list(Polygons(rpolys[x], wmRN[x])),
proj4string=CRS(proj4string(world.map)))
curPl <- SpatialPolygons(pl[x], proj4string=CRS(proj4string(world.map)))
theInt <- gIntersection(curRPol, curPl, id = wmRN[x])
theInt
})
# Create a SpatialPolygonDataFrame of the western (right) intersections
rSPDF <- SpatialPolygonsDataFrame(SpatialPolygons(unlist(lapply(rPolys,
slot, "polygons")), proj4string = CRS(proj4string(world.map))),
[email protected])
Затем информация может отображаться на карте в соответствии с центроидами lSPDF
или rSPDF
:
points(coordinates(rSPDF), col = factor([email protected]$REGION))
# or
text(coordinates(lSPDF), labels = [email protected]$FIPS, cex = .7)