Ответ 1
Анализ IACA
Используя IACA (анализатор кода архитектуры Intel) показывает, что слияние макроопераций действительно происходит и что это не проблема. Это Mystical, кто прав: Проблема в том, что в магазине не используется порт 7 вообще.
IACA сообщает следующее:
Intel(R) Architecture Code Analyzer Version - 2.1
Analyzed File - ../../../tests_fma
Binary Format - 64Bit
Architecture - HSW
Analysis Type - Throughput
Throughput Analysis Report
--------------------------
Block Throughput: 1.55 Cycles Throughput Bottleneck: FrontEnd, PORT2_AGU, PORT3_AGU
Port Binding In Cycles Per Iteration:
---------------------------------------------------------------------------------------
| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |
---------------------------------------------------------------------------------------
| Cycles | 0.5 0.0 | 0.5 | 1.5 1.0 | 1.5 1.0 | 1.0 | 0.0 | 1.0 | 0.0 |
---------------------------------------------------------------------------------------
N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred
* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | |
---------------------------------------------------------------------------------
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [rdi+rax*1]
| 2 | 0.5 | 0.5 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [rsi+rax*1]
| 2 | | | 0.5 | 0.5 | 1.0 | | | | CP | vmovaps ymmword ptr [rdx+rax*1], ymm1
| 1 | | | | | | | 1.0 | | | add rax, 0x20
| 0F | | | | | | | | | | jnz 0xffffffffffffffec
Total Num Of Uops: 6
В частности, заявленная пропускная способность блока в циклах (1.5) очень хорошо работает с эффективностью 66%.
Сообщение на веб-сайте IACA об этом самом явлении на Tue, 03/11/2014 - 12:39
было встречено этим ответом сотрудника Intel на Tue, 03/11/2014 - 23:20
:
Port7 AGU может работать только с магазинами с простым адресом памяти (без индексного регистра). Вот почему приведенный выше анализ не показывает использование порта7.
Это решительно решает, почему Порт 7 не используется.
Теперь сравним это с 32-кратным развернутым контуром (получается, что unroll16
shoudl на самом деле называется unroll32
):
Intel(R) Architecture Code Analyzer Version - 2.1
Analyzed File - ../../../tests_fma
Binary Format - 64Bit
Architecture - HSW
Analysis Type - Throughput
Throughput Analysis Report
--------------------------
Block Throughput: 32.00 Cycles Throughput Bottleneck: PORT2_AGU, Port2_DATA, PORT3_AGU, Port3_DATA, Port4, Port7
Port Binding In Cycles Per Iteration:
---------------------------------------------------------------------------------------
| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |
---------------------------------------------------------------------------------------
| Cycles | 16.0 0.0 | 16.0 | 32.0 32.0 | 32.0 32.0 | 32.0 | 2.0 | 2.0 | 32.0 |
---------------------------------------------------------------------------------------
N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred
* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | |
---------------------------------------------------------------------------------
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x20]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x20]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x20], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x40]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x40]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x40], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x60]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x60]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x60], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x80]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x80]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x80], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0xa0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0xa0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0xa0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0xc0]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0xc0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0xc0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0xe0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0xe0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0xe0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x100]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x100]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x100], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x120]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x120]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x120], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x140]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x140]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x140], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x160]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x160]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x160], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x180]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x180]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x180], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x1a0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x1a0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x1a0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x1c0]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x1c0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x1c0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x1e0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x1e0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x1e0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x200]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x200]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x200], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x220]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x220]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x220], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x240]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x240]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x240], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x260]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x260]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x260], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x280]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x280]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x280], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x2a0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x2a0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x2a0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x2c0]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x2c0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x2c0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x2e0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x2e0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x2e0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x300]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x300]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x300], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x320]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x320]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x320], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x340]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x340]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x340], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x360]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x360]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x360], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x380]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x380]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x380], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x3a0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x3a0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x3a0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x3c0]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x3c0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x3c0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x3e0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x3e0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x3e0], ymm1
| 1 | | | | | | 1.0 | | | | add r9, 0x400
| 1 | | | | | | | 1.0 | | | add r10, 0x400
| 1 | | | | | | 1.0 | | | | add r11, 0x400
| 1 | | | | | | | 1.0 | | | cmp r9, rcx
| 0F | | | | | | | | | | jnz 0xfffffffffffffcaf
Total Num Of Uops: 164
Мы видим здесь микропланирование и правильное планирование хранилища в Порт 7.
Ручной анализ (см. выше)
Теперь я могу ответить на второй из ваших вопросов: Возможно ли это без разворачивания, и если да, то как это сделать?. Ответ - нет.
Я заполнил массивы x
, y
и z
слева и справа с большим количеством буфера для эксперимента ниже и изменил внутренний цикл на следующее:
.L2:
vmovaps ymm1, [rdi+rax] ; 1L
vmovaps ymm0, [rsi+rax] ; 2L
vmovaps [rdx+rax], ymm2 ; S1
add rax, 32 ; ADD
jne .L2 ; JMP
Это намеренно не использует FMA (только загрузки и хранилища), и все инструкции загрузки/хранения не имеют зависимостей, так как поэтому не должно быть никаких опасностей, предотвращающих их проблему в любых портах выполнения.
Затем я тестировал каждую перестановку первой и второй нагрузок (1L
и 2L
), хранилище (S1
) и добавление (A
), оставляя условный переход (J
) в конце, и для каждого из них я проверил каждую возможную комбинацию смещений x
, y
и z
на 0 или -32 байта (чтобы исправить тот факт, что переупорядочивание add rax, 32
перед одним из Индексы r+r
приведут к тому, что нагрузка или хранилище будут нацелены на неправильный адрес). Цикл был выровнен до 32 байтов. Тесты выполнялись на i7-4700MQ с частотой 2,4 ГГц с отключенным TurboBoost с помощью echo '0' > /sys/devices/system/cpu/cpufreq/boost
под Linux и с использованием 2.4 для постоянной частоты. Вот результаты эффективности (максимум 24):
Cases: 0 1 2 3 4 5 6 7
L1 L2 S L1 L2 S L1 L2 S L1 L2 S L1 L2 S L1 L2 S L1 L2 S L1 L2 S
-0 -0 -0 -0 -0 -32 -0 -32 -0 -0 -32 -32 -32 -0 -0 -32 -0 -32 -32 -32 -0 -32 -32 -32
________________________________________________________________________________________________
12SAJ: 65.34% 65.34% 49.63% 65.07% 49.70% 65.05% 49.22% 65.07%
12ASJ: 48.59% 64.48% 48.74% 49.69% 48.75% 49.69% 48.99% 48.60%
1A2SJ: 49.69% 64.77% 48.67% 64.06% 49.69% 49.69% 48.94% 49.69%
1AS2J: 48.61% 64.66% 48.73% 49.71% 48.77% 49.69% 49.05% 48.74%
1S2AJ: 49.66% 65.13% 49.49% 49.66% 48.96% 64.82% 49.02% 49.66%
1SA2J: 64.44% 64.69% 49.69% 64.34% 49.69% 64.41% 48.75% 64.14%
21SAJ: 65.33%* 65.34% 49.70% 65.06% 49.62% 65.07% 49.22% 65.04%
21ASJ: Hypothetically =12ASJ
2A1SJ: Hypothetically =1A2SJ
2AS1J: Hypothetically =1AS2J
2S1AJ: Hypothetically =1S2AJ
2SA1J: Hypothetically =1SA2J
S21AJ: 48.91% 65.19% 49.04% 49.72% 49.12% 49.63% 49.21% 48.95%
S2A1J: Hypothetically =S1A2J
SA21J: Hypothetically =SA12J
SA12J: 64.69% 64.93% 49.70% 64.66% 49.69% 64.27% 48.71% 64.56%
S12AJ: 48.90% 65.20% 49.12% 49.63% 49.03% 49.70% 49.21%* 48.94%
S1A2J: 49.69% 64.74% 48.65% 64.48% 49.43% 49.69% 48.66% 49.69%
A2S1J: Hypothetically =A1S2J
A21SJ: Hypothetically =A12SJ
A12SJ: 64.62% 64.45% 49.69% 64.57% 49.69% 64.45% 48.58% 63.99%
A1S2J: 49.72% 64.69% 49.72% 49.72% 48.67% 64.46% 48.95% 49.72%
AS21J: Hypothetically =AS21J
AS12J: 48.71% 64.53% 48.76% 49.69% 48.76% 49.74% 48.93% 48.69%
Мы можем заметить несколько вещей из таблицы:
- Несколько плато результатов, но только два основных: чуть меньше 50% и около 65%.
- L1 и L2 могут свободно переключаться между собой, не влияя на результат.
- Отмена доступа на -32 байта может изменить эффективность.
- Образцы, которые нас интересуют (Load 1, Load 2, Store 1 и Jump с добавлением в любом месте и с соответствующими смещениями -32) все одинаковы, и все в верхнем плато:
-
12SAJ
Случай 0 (без смещения), с эффективностью 65,34% (самый высокий) -
12ASJ
Случай 1 (S-32
) с эффективностью 64.48% -
1A2SJ
Случай 3 (2L-32
,S-32
), с эффективностью 64.06% -
A12SJ
Случай 7 (1L-32
,2L-32
,S-32
), с эффективностью 63,99%
-
- Всегда существует хотя бы один "случай" для каждой перестановки, позволяющий выполнять на более высоком плато эффективности. В частности, случай 1 (где
S-32
), по-видимому, гарантирует это. - Случаи 2, 4 и 6 гарантируют выполнение на нижнем плато. У них есть общее, что одна или обе нагрузки смещены на -32, а хранилище нет.
- Для случаев 0, 3, 5 и 7 это зависит от перестановки.
Отсюда мы можем сделать хотя бы несколько выводов:
- Для портов выполнения 2 и 3 действительно не важно, какой адрес загрузки они генерируют и загружают.
- Слияние макросов с параметрами
add
иjmp
не поддается какой-либо перестановке инструкций (в частности, при смещении Case 1), что приводит к выводу, что вывод @Evgeny Kluev неверен: расстояние отadd
изjne
, по-видимому, не влияет на их слияние. Теперь я уверен, что Хасуэлл ROB справляется с этим правильно.- Что видел Евгений (начиная с
12SAJ
с эффективностью 65% до остальных с эффективностью 49% в рамках Case 0) был следствием исключительно стоимости адресов, загруженных и сохраненных, а не из-за неспособности от ядра к макро-предохранителю добавление и ветвь. - Кроме того, слияние макросов должно происходить, по крайней мере, некоторое время, так как среднее время цикла составляет 1,5 CC. Если бы не было слияния макросов, это было бы минимальным значением 2CC.
- Что видел Евгений (начиная с
- Проверяя все допустимые и недопустимые перестановки инструкций в не развернутом цикле, мы не видели ничего выше 65,34%. Это эмпирически отвечает "нет" на вопрос, можно ли использовать полную пропускную способность без разворота.
Я выдвигаю гипотезу о нескольких возможных объяснениях:
- Мы видим некоторые извращенные извращения из-за значения адресов относительно друг друга.
- Если бы это так, существовал бы набор смещений
x
,y
иz
, который обеспечивал бы максимальную пропускную способность. Быстрые случайные тесты с моей стороны, похоже, не поддерживают это.
- Если бы это так, существовал бы набор смещений
-
Мы видим, что цикл работает в одношаговый режим; Итерации цикла чередуются в одном такте, затем два.
-
Это может быть слияние макро-op, на которое влияют декодеры. От Agner Fog:
Плавкие арифметические/логические инструкции не могут быть декодированы в последнем из четырех декодеров на процессорах Sandy Bridge и Ivy Bridge. Я не проверял, относится ли это также к Хасуэлю.
- Кроме того, каждый другой тактовый цикл выдает команду "неправильному" порту, блокируя следующую итерацию за один дополнительный такт. Такая ситуация была бы самокорректирована в следующем такте, но оставалась бы колебательной.
- Если кто-то имеет доступ к счетчикам производительности Intel, он должен посмотреть события
UOPS_EXECUTED_PORT.PORT_[0-7]
. Если колебания не происходят, все используемые порты будут привязаны одинаково в течение соответствующего периода времени; Иначе, если произойдет осцилляция, будет раскол на 50%. Особенно важно посмотреть на порты Mystical, отмеченные (0, 1, 6 и 7).
- Если кто-то имеет доступ к счетчикам производительности Intel, он должен посмотреть события
-
И вот что, я думаю, не происходит:
- Я не верю, что скомпилированный арифметический + ветвь uop блокирует выполнение, перейдя в порт 0, поскольку предсказанные ветки отправляются исключительно на порт 6 (см. Таблицы инструкций Agner Fog под
Haswell -> Control transfer instructions
). После нескольких итераций цикла выше предсказатель ветвления узнает, что эта ветка является циклом и всегда предсказывает, как принято.
Я считаю, что это проблема, которая будет решена с помощью счетчиков производительности Intel.