Создать потокобезопасный массив в Swift
У меня проблема с многопоточностью в Swift. У меня есть массив с некоторыми объектами в нем. Через делегата класс получает новые объекты примерно каждую секунду. После этого я должен проверить, есть ли объекты уже в массиве, поэтому я должен обновить объект, в противном случае я должен удалить/добавить новый объект.
Если я добавляю новый объект, мне сначала нужно получить некоторые данные по сети. Это гендельт через блок.
Теперь моя проблема в том, как мне синхронизировать эту задачу?
Я пробовал dispatch_semaphore, но этот блокирует пользовательский интерфейс, пока блок не будет завершен.
Я также попробовал простую переменную bool, которая проверяет, выполняется ли блок в настоящий момент, и тем временем пропускает метод сравнения.
Но оба метода не идеальны.
Какой лучший способ управлять массивом, я не хочу дублировать данные в массиве.
Ответы
Ответ 1
Кирстейнс верен, но вам не всегда нужно использовать очередь отправки. Ты можешь использовать:
objc_sync_enter(array)
// manipulate the array
objc_sync_exit(array)
Это должно сработать. Для дополнительного бонуса вы можете создать функцию, которая будет использоваться всякий раз, когда вам нужна безопасность потоков:
func sync(lock: NSObject, closure: () -> Void) {
objc_sync_enter(lock)
closure()
objc_sync_exit(lock)
}
...
var list = NSMutableArray()
sync (list) {
list.addObject("something")
}
Обратите внимание на то, что я изменил AnyObject
к NSObject
. В Swift типы коллекций реализованы как struct
и они передаются по значению, поэтому я предполагаю, что было бы безопаснее работать с изменяемыми классами коллекций, которые передаются по ссылке при использовании удобной функции sync
.
Обновление для Swift
Рекомендуемый шаблон для многопоточного доступа использует barrier
диспетчеризации:
let queue = DispatchQueue(label: "thread-safe-obj", attributes: .concurrent)
// write
queue.async(flags: .barrier) {
// perform writes on data
}
// read
var value: ValueType!
queue.sync {
// perform read and assign value
}
return value
Ответ 2
Мой подход к этой проблеме заключался в использовании очереди последовательной отправки, чтобы синхронизировать доступ к массиву в штучной упаковке. Он будет блокировать поток, когда вы попытаетесь получить значение в индексе, и очередь действительно занята, но проблема также связана с блокировками.
public class SynchronizedArray<T> {
private var array: [T] = []
private let accessQueue = dispatch_queue_create("SynchronizedArrayAccess", DISPATCH_QUEUE_SERIAL)
public func append(newElement: T) {
dispatch_async(self.accessQueue) {
self.array.append(newElement)
}
}
public subscript(index: Int) -> T {
set {
dispatch_async(self.accessQueue) {
self.array[index] = newValue
}
}
get {
var element: T!
dispatch_sync(self.accessQueue) {
element = self.array[index]
}
return element
}
}
}
var a = SynchronizedArray<Int>()
a.append(1)
a.append(2)
a.append(3)
// can be empty as this is non-thread safe access
println(a.array)
// thread-safe synchonized access
println(a[0])
println(a[1])
println(a[2])
Ответ 3
Ответ Kirsteins верен, но для удобства я обновил этот ответ с предложениями Amol Chaudhari и Rob для использования параллельной очереди с асинхронным барьером, чтобы разрешить параллельные чтения, но блокировать записи.
Я также добавил некоторые другие функции массива, которые были полезны для меня.
public class SynchronizedArray<T> {
private var array: [T] = []
private let accessQueue = dispatch_queue_create("SynchronizedArrayAccess", DISPATCH_QUEUE_CONCURRENT)
public func append(newElement: T) {
dispatch_barrier_async(self.accessQueue) {
self.array.append(newElement)
}
}
public func removeAtIndex(index: Int) {
dispatch_barrier_async(self.accessQueue) {
self.array.removeAtIndex(index)
}
}
public var count: Int {
var count = 0
dispatch_sync(self.accessQueue) {
count = self.array.count
}
return count
}
public func first() -> T? {
var element: T?
dispatch_sync(self.accessQueue) {
if !self.array.isEmpty {
element = self.array[0]
}
}
return element
}
public subscript(index: Int) -> T {
set {
dispatch_barrier_async(self.accessQueue) {
self.array[index] = newValue
}
}
get {
var element: T!
dispatch_sync(self.accessQueue) {
element = self.array[index]
}
return element
}
}
}
UPDATE
Это тот же код, обновленный для Swift3.
public class SynchronizedArray<T> {
private var array: [T] = []
private let accessQueue = DispatchQueue(label: "SynchronizedArrayAccess", attributes: .concurrent)
public func append(newElement: T) {
self.accessQueue.async(flags:.barrier) {
self.array.append(newElement)
}
}
public func removeAtIndex(index: Int) {
self.accessQueue.async(flags:.barrier) {
self.array.remove(at: index)
}
}
public var count: Int {
var count = 0
self.accessQueue.sync {
count = self.array.count
}
return count
}
public func first() -> T? {
var element: T?
self.accessQueue.sync {
if !self.array.isEmpty {
element = self.array[0]
}
}
return element
}
public subscript(index: Int) -> T {
set {
self.accessQueue.async(flags:.barrier) {
self.array[index] = newValue
}
}
get {
var element: T!
self.accessQueue.sync {
element = self.array[index]
}
return element
}
}
}
Ответ 4
Небольшая деталь: в Swift 3 (по крайней мере, в Xcode 8 Beta 6) синтаксис для очередей значительно изменился. Важные изменения в ответе @Kirsteins:
private let accessQueue = DispatchQueue(label: "SynchronizedArrayAccess")
txAccessQueue.async() {
// Your async code goes here...
}
txAccessQueue.sync() {
// Your sync code goes here...
}
Ответ 5
подробности
- Xcode 10.1 (10B61), Swift 4.2
- Xcode 10.2.1 (10E1001), Swift 5
Решение
import Foundation
// https://developer.apple.com/documentation/swift/rangereplaceablecollection
struct AtomicArray<T>: RangeReplaceableCollection {
typealias Element = T
typealias Index = Int
typealias SubSequence = AtomicArray<T>
typealias Indices = Range<Int>
fileprivate var array: Array<T>
var startIndex: Int { return array.startIndex }
var endIndex: Int { return array.endIndex }
var indices: Range<Int> { return array.indices }
func index(after i: Int) -> Int { return array.index(after: i) }
private var semaphore = DispatchSemaphore(value: 1)
fileprivate func _wait() { semaphore.wait() }
fileprivate func _signal() { semaphore.signal() }
}
// MARK: - Instance Methods
extension AtomicArray {
init<S>(_ elements: S) where S : Sequence, AtomicArray.Element == S.Element {
array = Array<S.Element>(elements)
}
init() { self.init([]) }
init(repeating repeatedValue: AtomicArray.Element, count: Int) {
let array = Array(repeating: repeatedValue, count: count)
self.init(array)
}
}
// MARK: - Instance Methods
extension AtomicArray {
public mutating func append(_ newElement: AtomicArray.Element) {
_wait(); defer { _signal() }
array.append(newElement)
}
public mutating func append<S>(contentsOf newElements: S) where S : Sequence, AtomicArray.Element == S.Element {
_wait(); defer { _signal() }
array.append(contentsOf: newElements)
}
func filter(_ isIncluded: (AtomicArray.Element) throws -> Bool) rethrows -> AtomicArray {
_wait(); defer { _signal() }
let subArray = try array.filter(isIncluded)
return AtomicArray(subArray)
}
public mutating func insert(_ newElement: AtomicArray.Element, at i: AtomicArray.Index) {
_wait(); defer { _signal() }
array.insert(newElement, at: i)
}
mutating func insert<S>(contentsOf newElements: S, at i: AtomicArray.Index) where S : Collection, AtomicArray.Element == S.Element {
_wait(); defer { _signal() }
array.insert(contentsOf: newElements, at: i)
}
mutating func popLast() -> AtomicArray.Element? {
_wait(); defer { _signal() }
return array.popLast()
}
@discardableResult mutating func remove(at i: AtomicArray.Index) -> AtomicArray.Element {
_wait(); defer { _signal() }
return array.remove(at: i)
}
mutating func removeAll() {
_wait(); defer { _signal() }
array.removeAll()
}
mutating func removeAll(keepingCapacity keepCapacity: Bool) {
_wait(); defer { _signal() }
array.removeAll()
}
mutating func removeAll(where shouldBeRemoved: (AtomicArray.Element) throws -> Bool) rethrows {
_wait(); defer { _signal() }
try array.removeAll(where: shouldBeRemoved)
}
@discardableResult mutating func removeFirst() -> AtomicArray.Element {
_wait(); defer { _signal() }
return array.removeFirst()
}
mutating func removeFirst(_ k: Int) {
_wait(); defer { _signal() }
array.removeFirst(k)
}
@discardableResult mutating func removeLast() -> AtomicArray.Element {
_wait(); defer { _signal() }
return array.removeLast()
}
mutating func removeLast(_ k: Int) {
_wait(); defer { _signal() }
array.removeLast(k)
}
@inlinable public func forEach(_ body: (Element) throws -> Void) rethrows {
_wait(); defer { _signal() }
try array.forEach(body)
}
mutating func removeFirstIfExist(where shouldBeRemoved: (AtomicArray.Element) throws -> Bool) {
_wait(); defer { _signal() }
guard let index = try? array.firstIndex(where: shouldBeRemoved) else { return }
array.remove(at: index)
}
mutating func removeSubrange(_ bounds: Range<Int>) {
_wait(); defer { _signal() }
array.removeSubrange(bounds)
}
mutating func replaceSubrange<C, R>(_ subrange: R, with newElements: C) where C : Collection, R : RangeExpression, T == C.Element, AtomicArray<Element>.Index == R.Bound {
_wait(); defer { _signal() }
array.replaceSubrange(subrange, with: newElements)
}
mutating func reserveCapacity(_ n: Int) {
_wait(); defer { _signal() }
array.reserveCapacity(n)
}
public var count: Int {
_wait(); defer { _signal() }
return array.count
}
public var isEmpty: Bool {
_wait(); defer { _signal() }
return array.isEmpty
}
}
// MARK: - Get/Set
extension AtomicArray {
// Single action
func get() -> [T] {
_wait(); defer { _signal() }
return array
}
mutating func set(array: [T]) {
_wait(); defer { _signal() }
self.array = array
}
// Multy actions
mutating func get(closure: ([T])->()) {
_wait(); defer { _signal() }
closure(array)
}
mutating func set(closure: ([T]) -> ([T])) {
_wait(); defer { _signal() }
array = closure(array)
}
}
// MARK: - Subscripts
extension AtomicArray {
subscript(bounds: Range<AtomicArray.Index>) -> AtomicArray.SubSequence {
get {
_wait(); defer { _signal() }
return AtomicArray(array[bounds])
}
}
subscript(bounds: AtomicArray.Index) -> AtomicArray.Element {
get {
_wait(); defer { _signal() }
return array[bounds]
}
set(value) {
_wait(); defer { _signal() }
array[bounds] = value
}
}
}
// MARK: - Operator Functions
extension AtomicArray {
static func + <Other>(lhs: Other, rhs: AtomicArray) -> AtomicArray where Other : Sequence, AtomicArray.Element == Other.Element {
return AtomicArray(lhs + rhs.get())
}
static func + <Other>(lhs: AtomicArray, rhs: Other) -> AtomicArray where Other : Sequence, AtomicArray.Element == Other.Element {
return AtomicArray(lhs.get() + rhs)
}
static func + <Other>(lhs: AtomicArray, rhs: Other) -> AtomicArray where Other : RangeReplaceableCollection, AtomicArray.Element == Other.Element {
return AtomicArray(lhs.get() + rhs)
}
static func + (lhs: AtomicArray<Element>, rhs: AtomicArray<Element>) -> AtomicArray {
return AtomicArray(lhs.get() + rhs.get())
}
static func += <Other>(lhs: inout AtomicArray, rhs: Other) where Other : Sequence, AtomicArray.Element == Other.Element {
lhs._wait(); defer { lhs._signal() }
lhs.array += rhs
}
}
// MARK: - CustomStringConvertible
extension AtomicArray: CustomStringConvertible {
var description: String {
_wait(); defer { _signal() }
return "\(array)"
}
}
// MARK: - Equatable
extension AtomicArray where Element : Equatable {
func split(separator: Element, maxSplits: Int, omittingEmptySubsequences: Bool) -> [ArraySlice<Element>] {
_wait(); defer { _signal() }
return array.split(separator: separator, maxSplits: maxSplits, omittingEmptySubsequences: omittingEmptySubsequences)
}
func firstIndex(of element: Element) -> Int? {
_wait(); defer { _signal() }
return array.firstIndex(of: element)
}
func lastIndex(of element: Element) -> Int? {
_wait(); defer { _signal() }
return array.lastIndex(of: element)
}
func starts<PossiblePrefix>(with possiblePrefix: PossiblePrefix) -> Bool where PossiblePrefix : Sequence, Element == PossiblePrefix.Element {
_wait(); defer { _signal() }
return array.starts(with: possiblePrefix)
}
func elementsEqual<OtherSequence>(_ other: OtherSequence) -> Bool where OtherSequence : Sequence, Element == OtherSequence.Element {
_wait(); defer { _signal() }
return array.elementsEqual(other)
}
func contains(_ element: Element) -> Bool {
_wait(); defer { _signal() }
return array.contains(element)
}
static func != (lhs: AtomicArray<Element>, rhs: AtomicArray<Element>) -> Bool {
lhs._wait(); defer { lhs._signal() }
rhs._wait(); defer { rhs._signal() }
return lhs.array != rhs.array
}
static func == (lhs: AtomicArray<Element>, rhs: AtomicArray<Element>) -> Bool {
lhs._wait(); defer { lhs._signal() }
rhs._wait(); defer { rhs._signal() }
return lhs.array == rhs.array
}
}
Пример использования 1
import Foundation
// init
var array = AtomicArray<Int>()
print(array)
array = AtomicArray(repeating: 0, count: 5)
print(array)
array = AtomicArray([1,2,3,4,5,6,7,8,9])
print(array)
// add
array.append(0)
print(array)
array.append(contentsOf: [5,5,5])
print(array)
// filter
array = array.filter { $0 < 7 }
print(array)
// map
let strings = array.map { "\($0)" }
print(strings)
// insert
array.insert(99, at: 5)
print(array)
array.insert(contentsOf: [2, 2, 2], at: 0)
print(array)
// pop
_ = array.popLast()
print(array)
_ = array.popFirst()
print(array)
// remove
array.removeFirst()
print(array)
array.removeFirst(3)
print(array)
array.remove(at: 2)
print(array)
array.removeLast()
print(array)
array.removeLast(5)
print(array)
array.removeAll { $0%2 == 0 }
print(array)
array = AtomicArray([1,2,3,4,5,6,7,8,9,0])
array.removeSubrange(0...2)
print(array)
array.replaceSubrange(0...2, with: [0,0,0])
print(array)
array.removeAll()
print(array)
array.set(array: [1,2,3,4,5,6,7,8,9,0])
print(array)
// subscript
print(array[0])
array[0] = 100
print(array)
print(array[1...4])
// operator functions
array = [1,2,3] + AtomicArray([4,5,6])
print(array)
array = AtomicArray([4,5,6]) + [1,2,3]
print(array)
array = AtomicArray([1,2,3]) + AtomicArray([4,5,6])
print(array)
Пример использования 2
import Foundation
var arr = AtomicArray([0,1,2,3,4,5])
for i in 0...1000 {
// Single actions
DispatchQueue.global(qos: .background).async {
usleep(useconds_t(Int.random(in: 100...10000)))
let num = i*i
arr.append(num)
print("arr.append(\(num)), background queue")
}
DispatchQueue.global(qos: .default).async {
usleep(useconds_t(Int.random(in: 100...10000)))
arr.append(arr.count)
print("arr.append(\(arr.count)), default queue")
}
// multy actions
DispatchQueue.global(qos: .utility).async {
arr.set { array -> [Int] in
var newArray = array
newArray.sort()
print("sort(), .utility queue")
return newArray
}
}
}
Ответ 6
Я думаю, что dispatch_barriers стоит посмотреть. Использование gcd для синхронности более интуитивно для меня, чем использование ключевого слова synchronize, чтобы избежать мутации состояния из нескольких потоков.
https://mikeash.com/pyblog/friday-qa-2011-10-14-whats-new-in-gcd.html
Ответ 7
Здесь есть отличный ответ, который является потокобезопасным и не блокирует одновременные чтения: fooobar.com/questions/21948/...
Это написано в Objective C, но перенос на Swift тривиален.
@property (nonatomic, readwrite, strong) dispatch_queue_t thingQueue;
@property (nonatomic, strong) NSObject *thing;
- (id)init {
...
_thingQueue = dispatch_queue_create("...", DISPATCH_QUEUE_CONCURRENT);
...
}
- (NSObject *)thing {
__block NSObject *thing;
dispatch_sync(self.thingQueue, ^{
thing = _thing;
});
return thing;
}
- (void)setThing:(NSObject *)thing {
dispatch_barrier_async(self.thingQueue, ^{
_thing = thing;
});
}
Кредит https://stackoverflow.com/users/97337/rob-napier
Ответ 8
Подход:
Используйте DispatchQueue
для синхронизации
См:
http://basememara.com/creating-thread-safe-arrays-in-swift/
Код:
Ниже приведена грубая реализация поточно-безопасного массива, вы можете настроить его.
public class ThreadSafeArray<Element> {
private var elements : [Element]
private let syncQueue = DispatchQueue(label: "Sync Queue",
qos: .default,
attributes: .concurrent,
autoreleaseFrequency: .inherit,
target: nil)
public init() {
elements = []
}
public init(_ newElements: [Element]) {
elements = newElements
}
//MARK: Non-mutating
public var first : Element? {
return syncQueue.sync {
elements.first
}
}
public var last : Element? {
return syncQueue.sync {
elements.last
}
}
public var count : Int {
return syncQueue.sync {
elements.count
}
}
public subscript(index: Int) -> Element {
get {
return syncQueue.sync {
elements[index]
}
}
set {
syncQueue.sync(flags: .barrier) {
elements[index] = newValue
}
}
}
public func reversed() -> [Element] {
return syncQueue.sync {
elements.reversed()
}
}
public func flatMap<T>(_ transform: (Element) throws -> T?) rethrows -> [T] {
return try syncQueue.sync {
try elements.flatMap(transform)
}
}
public func filter(_ isIncluded: (Element) -> Bool) -> [Element] {
return syncQueue.sync {
elements.filter(isIncluded)
}
}
//MARK: Mutating
public func append(_ element: Element) {
syncQueue.sync(flags: .barrier) {
elements.append(element)
}
}
public func append<S>(contentsOf newElements: S) where Element == S.Element, S : Sequence {
syncQueue.sync(flags: .barrier) {
elements.append(contentsOf: newElements)
}
}
public func remove(at index: Int) -> Element? {
var element : Element?
syncQueue.sync(flags: .barrier) {
if elements.startIndex ..< elements.endIndex ~= index {
element = elements.remove(at: index)
}
else {
element = nil
}
}
return element
}
}
extension ThreadSafeArray where Element : Equatable {
public func index(of element: Element) -> Int? {
return syncQueue.sync {
elements.index(of: element)
}
}
}
Ответ 9
во-первых, objc_sync_enter не работает
objc_sync_enter(array)
defer {
objc_sync_exit(array)
}
причина, по которой objc_sync_enter/objc_sync_exit не работает с DISPATCH_QUEUE_PRIORITY_LOW
objc_sync_enter является примитивом крайне низкого уровня и не предназначен для непосредственного использования. Это деталь реализации старой @synchronized системы в ObjC.
для swift следует использовать вот так, как сказал @Kirsteins, и я предлагаю синхронизацию вместо async:
private let syncQueue = DispatchQueue(label:"com.test.LockQueue")
func test(){
self.syncQueue.sync{
// thread safe code here
}
}
Ответ 10
Чтобы улучшить принятый ответ, я бы предложил использовать defer:
objc_sync_enter(array)
defer {
objc_sync_exit(array)
}
// manipulate the array
и второй
func sync(lock: NSObject, closure: () -> Void) {
objc_sync_enter(lock)
defer {
objc_sync_exit(lock)
}
closure()
}