Мой обычный поиск foo терпит неудачу. Я пытаюсь найти функцию R, которая возвращает ВСЕ факторы целого числа. Есть как минимум 2 пакета с функциями factorize()
: gmp и conf.design, однако эти функции возвращают только простые факторы. Мне нужна функция, которая возвращает все факторы.
Очевидно, что поиск этого затруднен, так как R имеет конструкцию, называемую факторами, которая создает много шума в поиске.
Ответ 3
Update
Алгоритм полностью обновлен и теперь реализует множество полиномов, а также некоторые умные методы просеивания, которые устраняют миллионы проверок. В дополнение к исходным ссылкам этот документ вместе с этим сообщением от primo были очень полезны для этого последнего этапа (много престижа для primo). Primo отлично справляется с объяснением кишок QS в относительно коротком пространстве, а также написал довольно удивительный алгоритм (он будет учитывать число внизу, 38! + 1, менее чем за 2 секунды!! Insane!!).
Как и было обещано, ниже моя скромная реализация R Квадратичное сито. Я работаю над этим алгоритмом спорадически, так как обещал это в конце января. Я не буду пытаться полностью объяснить это (если не запрошено... также, ссылки ниже делают очень хорошую работу), поскольку это очень сложно и, надеюсь, мои имена функций говорят сами за себя. Это оказалось одним из самых сложных алгоритмов, которые я когда-либо пытался выполнить, поскольку он требует как с точки зрения программиста, так и математически. Я прочитал бесчисленные статьи и, в конечном счете, я нашел эти пять наиболее полезными (QSieve1, QSieve2, QSieve3, QSieve4, QSieve5).
N.B. Этот алгоритм, как он есть, не очень хорошо работает как общий алгоритм простой факторизации. Если бы он был оптимизирован в дальнейшем, он должен был бы сопровождаться секцией кода, которая учитывает меньшие простые числа (т.е. Менее 10 ^ 5, как было предложено этим сообщением) затем вызовите QuadSieveAll, проверьте, являются ли эти простые числа, а если нет, вызовите QuadSieveAll по обоим этим факторам и т.д., пока вы не останетесь со всеми штрихами (все эти шаги не так уж трудны). Тем не менее, основной темой этого поста является выделение сердца квадратичного сита, поэтому приведенные ниже примеры - это все полупривы (хотя это будет учитывать большинство нечетных чисел, не содержащих квадрат... Кроме того, я не видел примера QS, который не продемонстрировал не-полупервичный). Я знаю, что OP ищет метод для возврата всех факторов, а не простой факторизации, но этот алгоритм (если он будет оптимизирован дополнительно) в сочетании с одним из вышеперечисленных алгоритмов будет силой считаться с общим алгоритмом факторинга (особенно учитывая, что OP нуждался в чем-то для Project Euler, который обычно требует гораздо больше, чем методы грубой силы). Кстати, функция MyIntToBit
является вариацией ответа этого, а PrimeSieve
- из post что г-н Dontas появился на некоторое время назад (Kudos на этом также).
QuadSieveMultiPolysAll <- function(MyN, fudge1=0L, fudge2=0L, LenB=0L) {
### 'MyN' is the number to be factored; 'fudge1' is an arbitrary number
### that is used to determine the size of your prime base for sieving;
### 'fudge2' is used to set a threshold for sieving;
### 'LenB' is a the size of the sieving interval. The last three
### arguments are optional (they are determined based off of the
### size of MyN if left blank)
### The first 8 functions are helper functions
PrimeSieve <- function(n) {
n <- as.integer(n)
if (n > 1e9) stop("n too large")
primes <- rep(TRUE, n)
primes[1] <- FALSE
last.prime <- 2L
fsqr <- floor(sqrt(n))
while (last.prime <= fsqr) {
primes[seq.int(last.prime^2, n, last.prime)] <- FALSE
sel <- which(primes[(last.prime + 1):(fsqr + 1)])
if (any(sel)) {
last.prime <- last.prime + min(sel)
} else {
last.prime <- fsqr + 1
}
}
MyPs <- which(primes)
rm(primes)
gc()
MyPs
}
MyIntToBit <- function(x, dig) {
i <- 0L
string <- numeric(dig)
while (x > 0) {
string[dig - i] <- x %% 2L
x <- x %/% 2L
i <- i + 1L
}
string
}
ExpBySquaringBig <- function(x, n, p) {
if (n == 1) {
MyAns <- mod.bigz(x,p)
} else if (mod.bigz(n,2)==0) {
MyAns <- ExpBySquaringBig(mod.bigz(pow.bigz(x,2),p),div.bigz(n,2),p)
} else {
MyAns <- mod.bigz(mul.bigz(x,ExpBySquaringBig(mod.bigz(
pow.bigz(x,2),p), div.bigz(sub.bigz(n,1),2),p)),p)
}
MyAns
}
TonelliShanks <- function(a,p) {
P1 <- sub.bigz(p,1); j <- 0L; s <- P1
while (mod.bigz(s,2)==0L) {s <- s/2; j <- j+1L}
if (j==1L) {
MyAns1 <- ExpBySquaringBig(a,(p+1L)/4,p)
MyAns2 <- mod.bigz(-1 * ExpBySquaringBig(a,(p+1L)/4,p),p)
} else {
n <- 2L
Legendre2 <- ExpBySquaringBig(n,P1/2,p)
while (Legendre2==1L) {n <- n+1L; Legendre2 <- ExpBySquaringBig(n,P1/2,p)}
x <- ExpBySquaringBig(a,(s+1L)/2,p)
b <- ExpBySquaringBig(a,s,p)
g <- ExpBySquaringBig(n,s,p)
r <- j; m <- 1L
Test <- mod.bigz(b,p)
while (!(Test==1L) && !(m==0L)) {
m <- 0L
Test <- mod.bigz(b,p)
while (!(Test==1L)) {m <- m+1L; Test <- ExpBySquaringBig(b,pow.bigz(2,m),p)}
if (!m==0) {
x <- mod.bigz(x * ExpBySquaringBig(g,pow.bigz(2,r-m-1L),p),p)
g <- ExpBySquaringBig(g,pow.bigz(2,r-m),p)
b <- mod.bigz(b*g,p); r <- m
}; Test <- 0L
}; MyAns1 <- x; MyAns2 <- mod.bigz(p-x,p)
}
c(MyAns1, MyAns2)
}
SieveLists <- function(facLim, FBase, vecLen, sieveD, MInt) {
vLen <- ceiling(vecLen/2); SecondHalf <- (vLen+1L):vecLen
MInt1 <- MInt[1:vLen]; MInt2 <- MInt[SecondHalf]
tl <- vector("list",length=facLim)
for (m in 3:facLim) {
st1 <- mod.bigz(MInt1[1],FBase[m])
m1 <- 1L+as.integer(mod.bigz(sieveD[[m]][1] - st1,FBase[m]))
m2 <- 1L+as.integer(mod.bigz(sieveD[[m]][2] - st1,FBase[m]))
sl1 <- seq.int(m1,vLen,FBase[m])
sl2 <- seq.int(m2,vLen,FBase[m])
tl1 <- list(sl1,sl2)
st2 <- mod.bigz(MInt2[1],FBase[m])
m3 <- vLen+1L+as.integer(mod.bigz(sieveD[[m]][1] - st2,FBase[m]))
m4 <- vLen+1L+as.integer(mod.bigz(sieveD[[m]][2] - st2,FBase[m]))
sl3 <- seq.int(m3,vecLen,FBase[m])
sl4 <- seq.int(m4,vecLen,FBase[m])
tl2 <- list(sl3,sl4)
tl[[m]] <- list(tl1,tl2)
}
tl
}
SieverMod <- function(facLim, FBase, vecLen, SD, MInt, FList, LogFB, Lim, myCol) {
MyLogs <- rep(0,nrow(SD))
for (m in 3:facLim) {
MyBool <- rep(FALSE,vecLen)
MyBool[c(FList[[m]][[1]][[1]],FList[[m]][[2]][[1]])] <- TRUE
MyBool[c(FList[[m]][[1]][[2]],FList[[m]][[2]][[2]])] <- TRUE
temp <- which(MyBool)
MyLogs[temp] <- MyLogs[temp] + LogFB[m]
}
MySieve <- which(MyLogs > Lim)
MInt <- MInt[MySieve]; NewSD <- SD[MySieve,]
newLen <- length(MySieve); GoForIT <- FALSE
MyMat <- matrix(integer(0),nrow=newLen,ncol=myCol)
MyMat[which(NewSD[,1L] < 0),1L] <- 1L; MyMat[which(NewSD[,1L] > 0),1L] <- 0L
if ((myCol-1L) - (facLim+1L) > 0L) {MyMat[,((facLim+2L):(myCol-1L))] <- 0L}
if (newLen==1L) {MyMat <- matrix(MyMat,nrow=1,byrow=TRUE)}
if (newLen > 0L) {
GoForIT <- TRUE
for (m in 1:facLim) {
vec <- rep(0L,newLen)
temp <- which((NewSD[,1L]%%FBase[m])==0L)
NewSD[temp,] <- NewSD[temp,]/FBase[m]; vec[temp] <- 1L
test <- temp[which((NewSD[temp,]%%FBase[m])==0L)]
while (length(test)>0L) {
NewSD[test,] <- NewSD[test,]/FBase[m]
vec[test] <- (vec[test]+1L)
test <- test[which((NewSD[test,]%%FBase[m])==0L)]
}
MyMat[,m+1L] <- vec
}
}
list(MyMat,NewSD,MInt,GoForIT)
}
reduceMatrix <- function(mat) {
tempMin <- 0L; n1 <- ncol(mat); n2 <- nrow(mat)
mymax <- 1L
for (i in 1:n1) {
temp <- which(mat[,i]==1L)
t <- which(temp >= mymax)
if (length(temp)>0L && length(t)>0L) {
MyMin <- min(temp[t])
if (!(MyMin==mymax)) {
vec <- mat[MyMin,]
mat[MyMin,] <- mat[mymax,]
mat[mymax,] <- vec
}
t <- t[-1]; temp <- temp[t]
for (j in temp) {mat[j,] <- (mat[j,]+mat[mymax,])%%2L}
mymax <- mymax+1L
}
}
if (mymax<n2) {simpMat <- mat[-(mymax:n2),]} else {simpMat <- mat}
lenSimp <- nrow(simpMat)
if (is.null(lenSimp)) {lenSimp <- 0L}
mycols <- 1:n1
if (lenSimp>1L) {
## "Diagonalizing" Matrix
for (i in 1:lenSimp) {
if (all(simpMat[i,]==0L)) {simpMat <- simpMat[-i,]; next}
if (!simpMat[i,i]==1L) {
t <- min(which(simpMat[i,]==1L))
vec <- simpMat[,i]; tempCol <- mycols[i]
simpMat[,i] <- simpMat[,t]; mycols[i] <- mycols[t]
simpMat[,t] <- vec; mycols[t] <- tempCol
}
}
lenSimp <- nrow(simpMat); MyList <- vector("list",length=n1)
MyFree <- mycols[which((1:n1)>lenSimp)]; for (i in MyFree) {MyList[[i]] <- i}
if (is.null(lenSimp)) {lenSimp <- 0L}
if (lenSimp>1L) {
for (i in lenSimp:1L) {
t <- which(simpMat[i,]==1L)
if (length(t)==1L) {
simpMat[ ,t] <- 0L
MyList[[mycols[i]]] <- 0L
} else {
t1 <- t[t>i]
if (all(t1 > lenSimp)) {
MyList[[mycols[i]]] <- MyList[[mycols[t1[1]]]]
if (length(t1)>1) {
for (j in 2:length(t1)) {MyList[[mycols[i]]] <- c(MyList[[mycols[i]]], MyList[[mycols[t1[j]]]])}
}
}
else {
for (j in t1) {
if (length(MyList[[mycols[i]]])==0L) {MyList[[mycols[i]]] <- MyList[[mycols[j]]]}
else {
e1 <- which(MyList[[mycols[i]]]%in%MyList[[mycols[j]]])
if (length(e1)==0) {
MyList[[mycols[i]]] <- c(MyList[[mycols[i]]],MyList[[mycols[j]]])
} else {
e2 <- which(!MyList[[mycols[j]]]%in%MyList[[mycols[i]]])
MyList[[mycols[i]]] <- MyList[[mycols[i]]][-e1]
if (length(e2)>0L) {MyList[[mycols[i]]] <- c(MyList[[mycols[i]]], MyList[[mycols[j]]][e2])}
}
}
}
}
}
}
TheList <- lapply(MyList, function(x) {if (length(x)==0L) {0} else {x}})
list(TheList,MyFree)
} else {
list(NULL,NULL)
}
} else {
list(NULL,NULL)
}
}
GetFacs <- function(vec1, vec2, n) {
x <- mod.bigz(prod.bigz(vec1),n)
y <- mod.bigz(prod.bigz(vec2),n)
MyAns <- c(gcd.bigz(x-y,n),gcd.bigz(x+y,n))
MyAns[sort.list(asNumeric(MyAns))]
}
SolutionSearch <- function(mymat, M2, n, FB) {
colTest <- which(apply(mymat, 2, sum) == 0)
if (length(colTest) > 0) {solmat <- mymat[ ,-colTest]} else {solmat <- mymat}
if (length(nrow(solmat)) > 0) {
nullMat <- reduceMatrix(t(solmat %% 2L))
listSol <- nullMat[[1]]; freeVar <- nullMat[[2]]; LF <- length(freeVar)
} else {LF <- 0L}
if (LF > 0L) {
for (i in 2:min(10^8,(2^LF + 1L))) {
PosAns <- MyIntToBit(i, LF)
posVec <- sapply(listSol, function(x) {
t <- which(freeVar %in% x)
if (length(t)==0L) {
0
} else {
sum(PosAns[t])%%2L
}
})
ansVec <- which(posVec==1L)
if (length(ansVec)>0) {
if (length(ansVec) > 1L) {
myY <- apply(mymat[ansVec,],2,sum)
} else {
myY <- mymat[ansVec,]
}
if (sum(myY %% 2) < 1) {
myY <- as.integer(myY/2)
myY <- pow.bigz(FB,myY[-1])
temp <- GetFacs(M2[ansVec], myY, n)
if (!(1==temp[1]) && !(1==temp[2])) {
return(temp)
}
}
}
}
}
}
### Below is the main portion of the Quadratic Sieve
BegTime <- Sys.time(); MyNum <- as.bigz(MyN); DigCount <- nchar(as.character(MyN))
P <- PrimeSieve(10^5)
SqrtInt <- .mpfr2bigz(trunc(sqrt(mpfr(MyNum,sizeinbase(MyNum,b=2)+5L))))
if (DigCount < 24) {
DigSize <- c(4,10,15,20,23)
f_Pos <- c(0.5,0.25,0.15,0.1,0.05)
MSize <- c(5000,7000,10000,12500,15000)
if (fudge1==0L) {
LM1 <- lm(f_Pos ~ DigSize)
m1 <- summary(LM1)$coefficients[2,1]
b1 <- summary(LM1)$coefficients[1,1]
fudge1 <- DigCount*m1 + b1
}
if (LenB==0L) {
LM2 <- lm(MSize ~ DigSize)
m2 <- summary(LM2)$coefficients[2,1]
b2 <- summary(LM2)$coefficients[1,1]
LenB <- ceiling(DigCount*m2 + b2)
}
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
} else if (DigCount < 67) {
## These values were obtained from "The Multiple Polynomial
## Quadratic Sieve" by Robert D. Silverman
DigSize <- c(24,30,36,42,48,54,60,66)
FBSize <- c(100,200,400,900,1200,2000,3000,4500)
MSize <- c(5,25,25,50,100,250,350,500)
LM1 <- loess(FBSize ~ DigSize)
LM2 <- loess(MSize ~ DigSize)
if (fudge1==0L) {
fudge1 <- -0.4
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
myTarget <- ceiling(predict(LM1, DigCount))
while (LimB < myTarget) {
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
fudge1 <- fudge1+0.001
}
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
while (LenFBase < myTarget) {
fudge1 <- fudge1+0.005
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
myind <- which(P==max(B))+1L
myset <- tempP <- P[myind]
while (tempP < LimB) {
myind <- myind + 1L
tempP <- P[myind]
myset <- c(myset, tempP)
}
for (p in myset) {
t <- ExpBySquaringBig(MyNum,(p-1)/2,p)==1L
if (t) {facBase <- c(facBase,p)}
}
B <- c(B, myset)
LenFBase <- length(facBase)+1L
}
} else {
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
}
if (LenB==0L) {LenB <- 1000*ceiling(predict(LM2, DigCount))}
} else {
return("The number you've entered is currently too big for this algorithm!!")
}
SieveDist <- lapply(facBase, function(x) TonelliShanks(MyNum,x))
SieveDist <- c(1L,SieveDist); SieveDist[[1]] <- c(SieveDist[[1]],1L); facBase <- c(2L,facBase)
Lower <- -LenB; Upper <- LenB; LenB2 <- 2*LenB+1L; MyInterval <- Lower:Upper
M <- MyInterval + SqrtInt ## Set that will be tested
SqrDiff <- matrix(sub.bigz(pow.bigz(M,2),MyNum),nrow=length(M),ncol=1L)
maxM <- max(MyInterval)
LnFB <- log(facBase)
## N.B. primo uses 0.735, as his siever
## is more efficient than the one employed here
if (fudge2==0L) {
if (DigCount < 8) {
fudge2 <- 0
} else if (DigCount < 12) {
fudge2 <- .7
} else if (DigCount < 20) {
fudge2 <- 1.3
} else {
fudge2 <- 1.6
}
}
TheCut <- log10(maxM*sqrt(2*asNumeric(MyNum)))*fudge2
myPrimes <- as.bigz(facBase)
CoolList <- SieveLists(LenFBase, facBase, LenB2, SieveDist, MyInterval)
GetMatrix <- SieverMod(LenFBase, facBase, LenB2, SqrDiff, M, CoolList, LnFB, TheCut, LenFBase+1L)
if (GetMatrix[[4]]) {
newmat <- GetMatrix[[1]]; NewSD <- GetMatrix[[2]]; M <- GetMatrix[[3]]
NonSplitFacs <- which(abs(NewSD[,1L])>1L)
newmat <- newmat[-NonSplitFacs, ]
M <- M[-NonSplitFacs]
lenM <- length(M)
if (class(newmat) == "matrix") {
if (nrow(newmat) > 0) {
PosAns <- SolutionSearch(newmat,M,MyNum,myPrimes)
} else {
PosAns <- vector()
}
} else {
newmat <- matrix(newmat, nrow = 1)
PosAns <- vector()
}
} else {
newmat <- matrix(integer(0),ncol=(LenFBase+1L))
PosAns <- vector()
}
Atemp <- .mpfr2bigz(trunc(sqrt(sqrt(mpfr(2*MyNum))/maxM)))
if (Atemp < max(facBase)) {Atemp <- max(facBase)}; myPoly <- 0L
while (length(PosAns)==0L) {LegTest <- TRUE
while (LegTest) {
Atemp <- nextprime(Atemp)
Legendre <- asNumeric(ExpBySquaringBig(MyNum,(Atemp-1L)/2,Atemp))
if (Legendre == 1) {LegTest <- FALSE}
}
A <- Atemp^2
Btemp <- max(TonelliShanks(MyNum, Atemp))
B2 <- (Btemp + (MyNum - Btemp^2) * inv.bigz(2*Btemp,Atemp))%%A
C <- as.bigz((B2^2 - MyNum)/A)
myPoly <- myPoly + 1L
polySieveD <- lapply(1:LenFBase, function(x) {
AInv <- inv.bigz(A,facBase[x])
asNumeric(c(((SieveDist[[x]][1]-B2)*AInv)%%facBase[x],
((SieveDist[[x]][2]-B2)*AInv)%%facBase[x]))
})
M1 <- A*MyInterval + B2
SqrDiff <- matrix(A*pow.bigz(MyInterval,2) + 2*B2*MyInterval + C,nrow=length(M1),ncol=1L)
CoolList <- SieveLists(LenFBase, facBase, LenB2, polySieveD, MyInterval)
myPrimes <- c(myPrimes,Atemp)
LenP <- length(myPrimes)
GetMatrix <- SieverMod(LenFBase, facBase, LenB2, SqrDiff, M1, CoolList, LnFB, TheCut, LenP+1L)
if (GetMatrix[[4]]) {
n2mat <- GetMatrix[[1]]; N2SD <- GetMatrix[[2]]; M1 <- GetMatrix[[3]]
n2mat[,LenP+1L] <- rep(2L,nrow(N2SD))
if (length(N2SD) > 0) {NonSplitFacs <- which(abs(N2SD[,1L])>1L)} else {NonSplitFacs <- LenB2}
if (length(NonSplitFacs)<2*LenB) {
M1 <- M1[-NonSplitFacs]; lenM1 <- length(M1)
n2mat <- n2mat[-NonSplitFacs,]
if (lenM1==1L) {n2mat <- matrix(n2mat,nrow=1)}
if (ncol(newmat) < (LenP+1L)) {
numCol <- (LenP + 1L) - ncol(newmat)
newmat <- cbind(newmat,matrix(rep(0L,numCol*nrow(newmat)),ncol=numCol))
}
newmat <- rbind(newmat,n2mat); lenM <- lenM+lenM1; M <- c(M,M1)
if (class(newmat) == "matrix") {
if (nrow(newmat) > 0) {
PosAns <- SolutionSearch(newmat,M,MyNum,myPrimes)
}
}
}
}
}
EndTime <- Sys.time()
TotTime <- EndTime - BegTime
print(format(TotTime))
return(PosAns)
}
С помощью старого алгоритма QS
> library(gmp)
> library(Rmpfr)
> n3 <- prod(nextprime(urand.bigz(2, 40, 17)))
> system.time(t5 <- QuadSieveAll(n3,0.1,myps))
user system elapsed
164.72 0.77 165.63
> system.time(t6 <- factorize(n3))
user system elapsed
0.1 0.0 0.1
> all(t5[sort.list(asNumeric(t5))]==t6[sort.list(asNumeric(t6))])
[1] TRUE
С новым алгоритмом Muli-полиномиального QS
> QuadSieveMultiPolysAll(n3)
[1] "4.952 secs"
Big Integer ('bigz') object of length 2:
[1] 342086446909 483830424611
> n4 <- prod(nextprime(urand.bigz(2,50,5)))
> QuadSieveMultiPolysAll(n4) ## With old algo, it took over 4 hours
[1] "1.131717 mins"
Big Integer ('bigz') object of length 2:
[1] 166543958545561 880194119571287
> n5 <- as.bigz("94968915845307373740134800567566911") ## 35 digits
> QuadSieveMultiPolysAll(n5)
[1] "3.813167 mins"
Big Integer ('bigz') object of length 2:
[1] 216366620575959221 438925910071081891
> system.time(factorize(n5)) ## It appears we are reaching the limits of factorize
user system elapsed
131.97 0.00 131.98
Боковое примечание: число n5 выше - очень интересное число. Проверьте здесь
The Breaking Point!!!!
> n6 <- factorialZ(38) + 1L ## 45 digits
> QuadSieveMultiPolysAll(n6)
[1] "22.79092 mins"
Big Integer ('bigz') object of length 2:
[1] 14029308060317546154181 37280713718589679646221
> system.time(factorize(n6)) ## Shut it down after 2 days of running
Последний триумф (50 цифр)
> n9 <- prod(nextprime(urand.bigz(2,82,42)))
> QuadSieveMultiPolysAll(n9)
[1] "12.9297 hours"
Big Integer ('bigz') object of length 2:
[1] 2128750292720207278230259 4721136619794898059404993
## Based off of some crude test, factorize(n9) would take more than a year.
Следует отметить, что QS обычно не выполняет так же, как алгоритм Полларда rho на меньших числах, и степень QS начинает становиться очевидной по мере увеличения числа. Anywho, как всегда, я надеюсь, что это кого-то вдохновляет! Ура!
Ответ 4
Основное обновление
Ниже приведен мой последний алгоритм факторизации R. Это намного быстрее и отдает дань rle.
Алгоритм 3 (Обновлено)
library(gmp)
MyFactors <- function(MyN) {
myRle <- function (x1) {
n1 <- length(x1)
y1 <- x1[-1L] != x1[-n1]
i <- c(which(y1), n1)
list(lengths = diff(c(0L, i)), values = x1[i], uni = sum(y1)+1L)
}
if (MyN==1L) return(MyN)
else {
pfacs <- myRle(factorize(MyN))
unip <- pfacs$values
pv <- pfacs$lengths
n <- pfacs$uni
myf <- unip[1L]^(0L:pv[1L])
if (n > 1L) {
for (j in 2L:n) {
myf <- c(myf, do.call(c,lapply(unip[j]^(1L:pv[j]), function(x) x*myf)))
}
}
}
myf[order(asNumeric(myf))] ## 'order' is faster than 'sort.list'
}
Ниже приведены новые ориентиры (как говорит Дирк Эддельбуэттель здесь, "Не могу спорить с эмпириками".):
Случай 1 (большие простые множители)
set.seed(100)
myList <- lapply(1:10^3, function(x) sample(10^6, 10^5))
benchmark(SortList=lapply(myList, function(x) sort.list(x)),
OrderFun=lapply(myList, function(x) order(x)),
replications=3,
columns = c("test", "replications", "elapsed", "relative"))
test replications elapsed relative
2 OrderFun 3 59.41 1.000
1 SortList 3 61.52 1.036
## The times are limited by "gmp::factorize" and since it relies on
## pseudo-random numbers, the times can vary (i.e. one pseudo random
## number may lead to a factorization faster than others). With this
## in mind, any differences less than a half of second
## (or so) should be viewed as the same.
x <- pow.bigz(2,256)+1
system.time(z1 <- MyFactors(x))
user system elapsed
14.94 0.00 14.94
system.time(z2 <- all_divisors(x)) ## system.time(factorize(x))
user system elapsed ## user system elapsed
14.94 0.00 14.96 ## 14.94 0.00 14.94
all(z1==z2)
[1] TRUE
x <- as.bigz("12345678987654321321")
system.time(x1 <- MyFactors(x^2))
user system elapsed
20.66 0.02 20.71
system.time(x2 <- all_divisors(x^2)) ## system.time(factorize(x^2))
user system elapsed ## user system elapsed
20.69 0.00 20.69 ## 20.67 0.00 20.67
all(x1==x2)
[1] TRUE
Случай 2 (меньшие числа)
set.seed(199)
samp <- sample(10^9, 10^5)
benchmark(JosephDivs=sapply(samp, MyFactors),
DontasDivs=sapply(samp, all_divisors),
OldDontas=sapply(samp, Oldall_divisors),
replications=10,
columns = c("test", "replications", "elapsed", "relative"),
order = "relative")
test replications elapsed relative
1 JosephDivs 10 470.31 1.000
2 DontasDivs 10 567.10 1.206 ## with vapply(..., USE.NAMES = FALSE)
3 OldDontas 10 626.19 1.331 ## with sapply
Случай 3 (для полной тщательности)
set.seed(97)
samp <- sample(10^6, 10^4)
benchmark(JosephDivs=sapply(samp, MyFactors),
DontasDivs=sapply(samp, all_divisors),
CottonDivs=sapply(samp, get_all_factors),
ChaseDivs=sapply(samp, FUN),
replications=5,
columns = c("test", "replications", "elapsed", "relative"),
order = "relative")
test replications elapsed relative
1 JosephDivs 5 22.68 1.000
2 DontasDivs 5 27.66 1.220
3 CottonDivs 5 126.66 5.585
4 ChaseDivs 5 554.25 24.438
Оригинальное сообщение
г. Хлопковый алгоритм - очень хорошая реализация R. Метод грубой силы доведёт вас до сих пор и не сработает с большими числами (он также безумно медленный). Я представил три алгоритма, которые будут отвечать различным потребностям. Первый (это оригинальный алгоритм, который я опубликовал в 15 января и немного обновлен), является автономным алгоритмом факторизации, который предлагает комбинаторный подход, который является эффективным, точным и может быть легко переведен на другие языки. Второй алгоритм - это более сито, которое очень быстро и чрезвычайно полезно, когда вам нужна факторизация тысяч чисел быстро. Третий - это короткий (размещенный выше), но мощный автономный алгоритм, который превосходит любое число менее 2 ^ 70 (я отменил почти все, начиная с моего исходного кода). Я черпал вдохновение в использовании функции plyr::count
от Ричи Коттона (он вдохновил меня написать мою собственную функцию rle
, которая имеет очень похожий результат как plyr::count
), Джордж Донтас - чистый способ обработки тривиального случая (т.е. if (n==1) return(1)
), а решение, предоставленное Zelazny7, на вопрос , касалось векторов bigz.
Алгоритм 1 (оригинал)
library(gmp)
factor2 <- function(MyN) {
if (MyN == 1) return(1L)
else {
max_p_div <- factorize(MyN)
prime_vec <- max_p_div <- max_p_div[sort.list(asNumeric(max_p_div))]
my_factors <- powers <- as.bigz(vector())
uni_p <- unique(prime_vec); maxp <- max(prime_vec)
for (i in 1:length(uni_p)) {
temp_size <- length(which(prime_vec == uni_p[i]))
powers <- c(powers, pow.bigz(uni_p[i], 1:temp_size))
}
my_factors <- c(as.bigz(1L), my_factors, powers)
temp_facs <- powers; r <- 2L
temp_facs2 <- max_p_div2 <- as.bigz(vector())
while (r <= length(uni_p)) {
for (i in 1:length(temp_facs)) {
a <- which(prime_vec > max_p_div[i])
temp <- mul.bigz(temp_facs[i], powers[a])
temp_facs2 <- c(temp_facs2, temp)
max_p_div2 <- c(max_p_div2, prime_vec[a])
}
my_sort <- sort.list(asNumeric(max_p_div2))
temp_facs <- temp_facs2[my_sort]
max_p_div <- max_p_div2[my_sort]
my_factors <- c(my_factors, temp_facs)
temp_facs2 <- max_p_div2 <- as.bigz(vector()); r <- r+1L
}
}
my_factors[sort.list(asNumeric(my_factors))]
}
Алгоритм 2 (сито)
EfficientFactorList <- function(n) {
MyFactsList <- lapply(1:n, function(x) 1)
for (j in 2:n) {
for (r in seq.int(j, n, j)) {MyFactsList[[r]] <- c(MyFactsList[[r]], j)}
}; MyFactsList}
Он дает факторизацию каждого числа от 1 до 100 000 менее чем за 2 секунды. Чтобы дать вам представление об эффективности этого алгоритма, время для коэффициента 1 - 100 000 с использованием метода грубой силы занимает около 3 минут.
system.time(t1 <- EfficientFactorList(10^5))
user system elapsed
1.04 0.00 1.05
system.time(t2 <- sapply(1:10^5, MyFactors))
user system elapsed
39.21 0.00 39.23
system.time(t3 <- sapply(1:10^5, all_divisors))
user system elapsed
49.03 0.02 49.05
TheTest <- sapply(1:10^5, function(x) all(t2[[x]]==t3[[x]]) && all(asNumeric(t2[[x]])==t1[[x]]) && all(asNumeric(t3[[x]])==t1[[x]]))
all(TheTest)
[1] TRUE
Заключительные мысли
г. Dontass оригинальный комментарий о факторинг больших чисел заставил меня думать, а что действительно действительно большие числа... как цифры больше, чем 2 ^ 200. Вы увидите, что какой алгоритм вы выберете на этой странице, все они займут очень много времени, потому что большинство из них полагаются на gmp::factorize
, который использует Pollard- Rho. Из этого вопроса этот алгоритм подходит только для чисел менее 2 ^ 70. В настоящее время я работаю над своим собственным алгоритмом факторизации, который реализует Quadratic Sieve, который должен вывести все эти алгоритмы на следующий уровень.