Ответ 1
Вам все равно придется указывать индексы для двух других измерений, чтобы это работало правильно.
>>> a = numpy.zeros((3, 3, 3))
>>> a += numpy.array((1, 3, 2)).reshape((3, 1, 1))
>>> b = numpy.arange(3*3*3).reshape((3, 3, 3))
>>> sort_indices = numpy.argsort(a, axis=0)
>>> static_indices = numpy.indices((3, 3, 3))
>>> b[sort_indices, static_indices[1], static_indices[2]]
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]]])
numpy.indices
вычисляет индексы каждой оси массива, когда "сплющивается" через две другие оси (или n - 1 оси, где n = общее количество осей). Другими словами, это (извинения за длинный пост):
>>> static_indices
array([[[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]],
[[2, 2, 2],
[2, 2, 2],
[2, 2, 2]]],
[[[0, 0, 0],
[1, 1, 1],
[2, 2, 2]],
[[0, 0, 0],
[1, 1, 1],
[2, 2, 2]],
[[0, 0, 0],
[1, 1, 1],
[2, 2, 2]]],
[[[0, 1, 2],
[0, 1, 2],
[0, 1, 2]],
[[0, 1, 2],
[0, 1, 2],
[0, 1, 2]],
[[0, 1, 2],
[0, 1, 2],
[0, 1, 2]]]])
Это индексы идентичности для каждой оси; когда они используются для индексации b, они воссоздают b.
>>> b[static_indices[0], static_indices[1], static_indices[2]]
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])
В качестве альтернативы numpy.indices
вы можете использовать numpy.ogrid
, как предполагает unutbu. Поскольку объект, сгенерированный ogrid
, меньше, я создам все три оси, просто для согласованности, но учтите unutbu comment для способа сделать это, создав только два.
>>> static_indices = numpy.ogrid[0:a.shape[0], 0:a.shape[1], 0:a.shape[2]]
>>> a[sort_indices, static_indices[1], static_indices[2]]
array([[[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]],
[[ 2., 2., 2.],
[ 2., 2., 2.],
[ 2., 2., 2.]],
[[ 3., 3., 3.],
[ 3., 3., 3.],
[ 3., 3., 3.]]])