Ответ 1
Вы можете прочитать это: https://0xadada.pub/2003/12/15/connect-four-playing-ai-agent/
Я пытаюсь правильно реализовать игровой ИИ Connect Four, но пока не пользуюсь своими глупыми действиями:
Мой проект состоит из следующих двух GitHub-репозиториев:
где GameAI содержит:
package net.coderodde.zerosum.ai.impl;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import net.coderodde.zerosum.ai.EvaluatorFunction;
import net.coderodde.zerosum.ai.GameEngine;
import net.coderodde.zerosum.ai.State;
/**
* This class implements the
* <a href="#" onclick="location.href='https://en.wikipedia.org/wiki/Minimax'; return false;">Minimax</a> algorithm for
* zero-sum two-player games.
*
* @param <S> the game state type.
* @param <P> the player color type.
* @author Rodion "rodde" Efremov
* @version 1.6 (May 26, 2019)
*/
public final class SortingAlphaBetaPruningGameEngine
<S extends State<S>, P extends Enum<P>>
extends GameEngine<S, P> {
/**
* Stores the terminal node or a node at the depth zero with the best value
* so far, which belongs to the maximizing player moves.
*/
private S bestTerminalMaximizingState;
/**
* Stores the value of {@code bestTerminalMaximizingState}.
*/
private double bestTerminalMaximizingStateValue;
/**
* Stores the terminal node or a node at the depth zero with the best value
* so far, which belongs to the minimizing player moves.
*/
private S bestTerminalMinimizingState;
/**
* Stores the value of {@code bestTerminalMinimizingState}.
*/
private double bestTerminalMinimizingStateValue;
/**
* Indicates whether we are computing a next ply for the minimizing player
* or not. If not, we are computing a next ply for the maximizing player.
*/
private boolean makingPlyForMinimizingPlayer;
/**
* Maps each visited state to its parent state.
*/
private final Map<S, S> parents = new HashMap<>();
/**
* Constructs this minimax game engine.
* @param evaluatorFunction the evaluator function.
* @param depth the search depth.
*/
public SortingAlphaBetaPruningGameEngine(
EvaluatorFunction<S> evaluatorFunction,
int depth) {
super(evaluatorFunction, depth, Integer.MAX_VALUE);
}
/**
* {@inheritDoc }
*/
@Override
public S makePly(S state,
P minimizingPlayer,
P maximizingPlayer,
P initialPlayer) {
// Reset the best known values:
bestTerminalMaximizingStateValue = Double.NEGATIVE_INFINITY;
bestTerminalMinimizingStateValue = Double.POSITIVE_INFINITY;
makingPlyForMinimizingPlayer = initialPlayer != minimizingPlayer;
// Do the game tree search:
makePlyImpl(state,
depth,
Double.NEGATIVE_INFINITY, // intial alpha
Double.POSITIVE_INFINITY, // intial beta
minimizingPlayer,
maximizingPlayer,
initialPlayer);
// Find the next game state starting from 'state':
S returnState =
inferBestState(
initialPlayer == minimizingPlayer ?
bestTerminalMinimizingState :
bestTerminalMaximizingState);
// Release the resources:
parents.clear();
bestTerminalMaximizingState = null;
bestTerminalMinimizingState = null;
// We are done with a single move:
return returnState;
}
private S inferBestState(S bestTerminalState) {
List<S> statePath = new ArrayList<>();
S state = bestTerminalState;
while (state != null) {
statePath.add(state);
state = parents.get(state);
}
if (statePath.size() == 1) {
// The root node is terminal. Return null:
return null;
}
// Return the second upmost state:
Collections.<S>reverse(statePath);
return statePath.get(1);
}
/**
* Performs a single step down the game tree branch.
*
* @param state the starting state.
* @param depth the maximum depth of the game tree.
* @param minimizingPlayer the minimizing player.
* @param maximizingPlayer the maximizing player.
* @param currentPlayer the current player.
* @return the value of the best ply.
*/
private double makePlyImpl(S state,
int depth,
double alpha,
double beta,
P minimizingPlayer,
P maximizingPlayer,
P currentPlayer) {
if (depth == 0 || state.isTerminal()) {
double value = evaluatorFunction.evaluate(state);
if (!makingPlyForMinimizingPlayer) {
if (bestTerminalMinimizingStateValue > value) {
bestTerminalMinimizingStateValue = value;
bestTerminalMinimizingState = state;
}
} else {
if (bestTerminalMaximizingStateValue < value) {
bestTerminalMaximizingStateValue = value;
bestTerminalMaximizingState = state;
}
}
return value;
}
if (currentPlayer == maximizingPlayer) {
double value = Double.NEGATIVE_INFINITY;
List<S> children = state.children();
children.sort((S a, S b) -> {
double valueA = super.evaluatorFunction.evaluate(a);
double valueB = super.evaluatorFunction.evaluate(b);
return Double.compare(valueB, valueA);
});
for (S child : children) {
value = Math.max(
value,
makePlyImpl(child,
depth - 1,
alpha,
beta,
minimizingPlayer,
maximizingPlayer,
minimizingPlayer));
parents.put(child, state);
alpha = Math.max(alpha, value);
if (alpha >= beta) {
break;
}
}
return value;
} else {
// Here, 'initialPlayer == minimizingPlayer'.
double value = Double.POSITIVE_INFINITY;
List<S> children = state.children();
children.sort((S a, S b) -> {
double valueA = super.evaluatorFunction.evaluate(a);
double valueB = super.evaluatorFunction.evaluate(b);
return Double.compare(valueA, valueB);
});
for (S child : children) {
value = Math.min(
value,
makePlyImpl(child,
depth - 1,
alpha,
beta,
minimizingPlayer,
maximizingPlayer,
maximizingPlayer));
parents.put(child, state);
beta = Math.min(beta, value);
if (alpha >= beta) {
break;
}
}
return value;
}
}
}
и у меня есть две функции оценки из Интернета/моей головы. Первый (см. Ниже) находит все паттерны длины 2, 3 и 4 и умножает их число появлений на константы, которые будут благоприятствовать более длинным из них. Не похоже на работу. Другой поддерживает матрицу целых чисел; каждое целое число обозначает количество шаблонов, которые могут занимать слот этих целых чисел. Тоже не сработало.
package net.coderodde.games.connect.four.impl;
import net.coderodde.games.connect.four.ConnectFourState;
import net.coderodde.games.connect.four.PlayerColor;
import net.coderodde.zerosum.ai.EvaluatorFunction;
/**
* This class implements the default Connect Four state evaluator. The white
* player wants to maximize, the red player wants to minimize.
*
* @author Rodion "rodde" Efremov
* @version 1.6 (May 24, 2019)
*/
public final class BruteForceConnectFourStateEvaluatorFunction
implements EvaluatorFunction<ConnectFourState> {
private static final double POSITIVE_WIN_VALUE = 1e9;
private static final double NEGATIVE_WIN_VALUE = -1e9;
private static final double POSITIVE_CLOSE_TO_WIN_VALUE = 1e6;
private static final double NEGATIVE_CLOSE_TO_WIN_VALUE = -1e6;
private static final double BASE_VALUE = 1e1;
/**
* The weight matrix. Maps each position to its weight. We need this in
* order to
*/
private final double[][] weightMatrix;
/**
* The winning length.
*/
private final int winningLength;
/**
* Constructs the default heuristic function for Connect Four game states.
*
* @param width the game board width.
* @param height the game board height.
* @param maxWeight the maximum weight in the weight matrix.
* @param winningPatternLength the winning pattern length.
*/
public BruteForceConnectFourStateEvaluatorFunction(final int width,
final int height,
final double maxWeight,
final int winningPatternLength) {
this.weightMatrix = getWeightMatrix(width, height, maxWeight);
this.winningLength = winningPatternLength;
}
/**
* Evaluates the given input {@code state} and returns the estimate.
* @param state the state to estimate.
* @return the estimate.
*/
@Override
public double evaluate(ConnectFourState state) {
PlayerColor winnerPlayerColor = state.checkVictory();
if (winnerPlayerColor == PlayerColor.MAXIMIZING_PLAYER) {
return POSITIVE_WIN_VALUE - state.getDepth();
}
if (winnerPlayerColor == PlayerColor.MINIMIZING_PLAYER) {
return NEGATIVE_WIN_VALUE + state.getDepth();
}
// 'minimizingPatternCounts[i]' gives the number of patterns of
// length 'i':
int[] minimizingPatternCounts = new int[state.getWinningLength() + 1];
int[] maximizingPatternCounts = new int[minimizingPatternCounts.length];
// Do not consider patterns of length one!
for (int targetLength = 2;
targetLength <= winningLength;
targetLength++) {
int count = findMinimizingPatternCount(state, targetLength);
if (count == 0) {
// Once here, it is not possible to find patterns of larger
// length than targetLength:
break;
}
minimizingPatternCounts[targetLength] = count;
}
for (int targetLength = 2;
targetLength <= state.getWinningLength();
targetLength++) {
int count = findMaximizingPatternCount(state, targetLength);
if (count == 0) {
// Once here, it is not possible to find patterns of larger
// length than targetLength:
break;
}
maximizingPatternCounts[targetLength] = count;
}
double score = computeBaseScore(minimizingPatternCounts,
maximizingPatternCounts);
score += computeAlmostFullPatternScores(state, winningLength);
return score + getWeights(weightMatrix, state);
}
private static final double
computeAlmostFullPatternScores(ConnectFourState state,
int winningLength) {
final int targetLength = winningLength - 2;
double score = 0.0;
for (int y = state.getHeight() - 1; y >= 0; y--) {
loop:
for (int x = 0; x < state.getWidth() - targetLength; x++) {
if (state.readCell(x, y) == null) {
// Try to find 'targetLength' marks:
PlayerColor targetPlayerColor = state.readCell(x + 1, y);
if (targetPlayerColor == null) {
continue loop;
}
int currentLength = 1;
for (int xx = x + 1; xx < state.getWidth() - 1; xx++) {
if (state.readCell(xx, y) == targetPlayerColor) {
currentLength++;
if (currentLength == targetLength) {
if (state.getPlayerColor() ==
PlayerColor.MINIMIZING_PLAYER) {
score += NEGATIVE_CLOSE_TO_WIN_VALUE;
} else {
score += POSITIVE_CLOSE_TO_WIN_VALUE;
}
continue loop;
}
}
}
}
}
return score;
}
return score;
}
/**
* Finds the number of red patterns of length {@code targetLength}.
* @param state the target state.
* @param targetLength the length of the pattern to find.
* @return the number of red patterns of length {@code targetLength}.
*/
private static final int findMinimizingPatternCount(ConnectFourState state,
int targetLength) {
return findPatternCount(state,
targetLength,
PlayerColor.MINIMIZING_PLAYER);
}
/**
* Finds the number of white patterns of length {@code targetLength}.
* @param state the target state.
* @param targetLength the length of the pattern to find.
* @return the number of white patterns of length {@code targetLength}.
*/
private static final int findMaximizingPatternCount(ConnectFourState state,
int targetLength) {
return findPatternCount(state,
targetLength,
PlayerColor.MAXIMIZING_PLAYER);
}
/**
* Implements the target pattern counting function for both the player
* colors.
* @param state the state to search.
* @param targetLength the length of the patterns to count.
* @param playerColor the target player color.
* @return the number of patterns of length {@code targetLength} and color
* {@code playerColor}.
*/
private static final int findPatternCount(ConnectFourState state,
int targetLength,
PlayerColor playerColor) {
int count = 0;
count += findHorizontalPatternCount(state,
targetLength,
playerColor);
count += findVerticalPatternCount(state,
targetLength,
playerColor);
count += findAscendingDiagonalPatternCount(state,
targetLength,
playerColor);
count += findDescendingDiagonalPatternCount(state,
targetLength,
playerColor);
return count;
}
/**
* Scans the input state for diagonal <b>descending</b> patterns and
* returns the number of such patterns.
* @param state the target state.
* @param patternLength the target pattern length.
* @param playerColor the target player color.
* @return the number of patterns.
*/
private static final int
findDescendingDiagonalPatternCount(ConnectFourState state,
int patternLength,
PlayerColor playerColor) {
int patternCount = 0;
for (int y = 0; y < state.getWinningLength() - 1; y++) {
inner:
for (int x = 0;
x <= state.getWidth() - state.getWinningLength();
x++) {
for (int i = 0; i < patternLength; i++) {
if (state.readCell(x + i, y + i) != playerColor) {
continue inner;
}
}
patternCount++;
}
}
return patternCount;
}
/**
* Scans the input state for diagonal <b>ascending</b> patterns and returns
* the number of such patterns.
* @param state the target state.
* @param patternLength the target pattern length.
* @param playerColor the target player color.
* @return the number of patterns.
*/
private static final int
findAscendingDiagonalPatternCount(ConnectFourState state,
int patternLength,
PlayerColor playerColor) {
int patternCount = 0;
for (int y = state.getHeight() - 1;
y > state.getHeight() - state.getWinningLength();
y--) {
inner:
for (int x = 0;
x <= state.getWidth() - state.getWinningLength();
x++) {
for (int i = 0; i < patternLength; i++) {
if (state.readCell(x + i, y - i) != playerColor) {
continue inner;
}
}
patternCount++;
}
}
return patternCount;
}
/**
* Scans the input state for diagonal <b>horizontal</b> patterns and returns
* the number of such patterns.
* @param state the target state.
* @param patternLength the target pattern length.
* @param playerColor the target player color.
* @return the number of patterns.
*/
private static final int findHorizontalPatternCount(
ConnectFourState state,
int patternLength,
PlayerColor playerColor) {
int patternCount = 0;
for (int y = state.getHeight() - 1; y >= 0; y--) {
inner:
for (int x = 0; x <= state.getWidth() - patternLength; x++) {
if (state.readCell(x, y) == null) {
continue inner;
}
for (int i = 0; i < patternLength; i++) {
if (state.readCell(x + i, y) != playerColor) {
continue inner;
}
}
patternCount++;
}
}
return patternCount;
}
/**
* Scans the input state for diagonal <b>vertical</b> patterns and returns
* the number of such patterns.
* @param state the target state.
* @param patternLength the target pattern length.
* @param playerColor the target player color.
* @return the number of patterns.
*/
private static final int findVerticalPatternCount(ConnectFourState state,
int patternLength,
PlayerColor playerColor) {
int patternCount = 0;
outer:
for (int x = 0; x < state.getWidth(); x++) {
inner:
for (int y = state.getHeight() - 1;
y > state.getHeight() - state.getWinningLength();
y--) {
if (state.readCell(x, y) == null) {
continue outer;
}
for (int i = 0; i < patternLength; i++) {
if (state.readCell(x, y - i) != playerColor) {
continue inner;
}
}
patternCount++;
}
}
return patternCount;
}
/**
* Gets the state weight. We use this in order to discourage the positions
* that are close to borders/far away from the center of the game board.
* @param weightMatrix the weighting matrix.
* @param state the state to weight.
* @return the state weight.
*/
private static final double getWeights(final double[][] weightMatrix,
final ConnectFourState state) {
double score = 0.0;
outer:
for (int x = 0; x < state.getWidth(); x++) {
for (int y = state.getHeight() - 1; y >= 0; y--) {
PlayerColor playerColor = state.readCell(x, y);
if (playerColor == null) {
continue outer;
}
if (playerColor == PlayerColor.MINIMIZING_PLAYER) {
score -= weightMatrix[y][x];
} else {
score += weightMatrix[y][x];
}
}
}
return score;
}
/**
* Computes the base scorer that relies on number of patterns. For example,
* {@code redPatternCounts[i]} will denote the number of patterns of length
* [@code i}.
* @param minimizingPatternCounts the pattern count map for red patterns.
* @param maximizingPatternCounts the pattern count map for white patterns.
* @return the base estimate.
*/
private static final double computeBaseScore(
int[] minimizingPatternCounts,
int[] maximizingPatternCounts) {
final int winningLength = minimizingPatternCounts.length - 1;
double value = 0.0;
if (minimizingPatternCounts[winningLength] != 0) {
value = NEGATIVE_WIN_VALUE;
}
if (maximizingPatternCounts[winningLength] != 0) {
value = POSITIVE_WIN_VALUE;
}
for (int length = 2; length < minimizingPatternCounts.length; length++) {
int minimizingCount = minimizingPatternCounts[length];
value -= minimizingCount * Math.pow(BASE_VALUE, length);
int maximizingCount = maximizingPatternCounts[length];
value += maximizingCount * Math.pow(BASE_VALUE, length);
}
return value;
}
/**
* Computes the weight matrix. The closer the entry in the board is to the
* center of the board, the closer the weight of that position will be to
* {@code maxWeight}.
*
* @param width the width of the matrix.
* @param height the height of the matrix.
* @param maxWeight the maximum weight. The minimum weight will be always
* 1.0.
* @return the weight matrix.
*/
private static final double[][] getWeightMatrix(final int width,
final int height,
final double maxWeight) {
final double[][] weightMatrix = new double[height][width];
for (int y = 0; y < weightMatrix.length; y++) {
for (int x = 0; x < weightMatrix[0].length; x++) {
int left = x;
int right = weightMatrix[0].length - x - 1;
int top = y;
int bottom = weightMatrix.length - y - 1;
int horizontalDifference = Math.abs(left - right);
int verticalDifference = Math.abs(top - bottom);
weightMatrix[y][x] =
1.0 + (maxWeight - 1.0) /
(horizontalDifference + verticalDifference);
}
}
return weightMatrix;
}
}
package net.coderodde.games.connect.four.impl;
import net.coderodde.games.connect.four.ConnectFourState;
import net.coderodde.games.connect.four.PlayerColor;
import net.coderodde.zerosum.ai.EvaluatorFunction;
/**
* This evaluation function relies on a weight matrix that reflects how many
* patterns visit each matrix position.
*
* @author Rodion "rodde" Efremov
* @version 1.6 (Jun 19, 2019)
*/
public class WeightMatrixConnectFourStateEvaluatorFunction implements EvaluatorFunction<ConnectFourState> {
private final double[][] matrix;
public WeightMatrixConnectFourStateEvaluatorFunction() {
this.matrix = new double[][] {{3, 4, 5, 7, 5, 4, 3},
{4, 6, 8, 10, 8, 6, 4},
{5, 8, 11, 13, 11, 8, 5},
{5, 8, 11, 13, 11, 8, 5},
{4, 6, 8, 10, 8, 6, 4},
{3, 4, 5, 7, 5, 4, 3}};
}
@Override
public double evaluate(ConnectFourState state) {
PlayerColor winner = state.checkVictory();
if (winner == PlayerColor.MINIMIZING_PLAYER) {
return -1e6;
}
if (winner == PlayerColor.MAXIMIZING_PLAYER) {
return 1e6;
}
double sum = 0.0;
for (int y = 0; y < state.getHeight(); y++) {
for (int x = 0; x < state.getWidth(); x++) {
if (state.readCell(x, y) == PlayerColor.MAXIMIZING_PLAYER) {
sum += matrix[y][x];
} else if (state.readCell(x, y) ==
PlayerColor.MINIMIZING_PLAYER) {
sum -= matrix[y][x];
}
}
}
return sum;
}
}
Я совершенно не понимаю, почему обе функции оценщика не обеспечивают интеллектуальных игр. Любой совет?
Вы можете прочитать это: https://0xadada.pub/2003/12/15/connect-four-playing-ai-agent/
Я прочитал, и я не могу себе представить, как помочь вам, я признаюсь, что я был потерян, но я нашел вопрос, который может помочь вам в стеке https://codereview.stackexchange.com/questions/150541/connect-four -game-с-минимаксной-д.в.
Выигрышные и проигрышные ходы в таком случае не являются эвристическими функциями, они являются двоичными ответами да/нет. Вы не должны относиться к ним эвристически для простой игры, такой как connect 4. Вы проверяете каждый ход "победит ли это?" (если так, то сделай это). Если нет, проверяйте каждый ход: "Это мешает другому игроку выиграть на следующем ходу?" (опять же, если так, сделайте это). После этого вы применяете эвристику, чтобы найти лучший ход из доступных.
Я подозреваю, что вы сталкиваетесь с такими проблемами, как "выигрышный ход в углу (значение 3) никогда не превзойдет проигрышный ход в середине (значение 13)".