Как создать отстающую структуру данных с помощью pandas dataframe
Пример
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
print s
1 5
2 4
3 3
4 2
5 1
Есть ли эффективный способ создания серии. например содержащий в каждой строке значения с задержкой (в этом примере до лага 2)
3 [3, 4, 5]
4 [2, 3, 4]
5 [1, 2, 3]
Это соответствует s = pd.Series([[3,4,5], [2,3,4], [1,2,3]], index = [3,4,5])
Как это можно сделать эффективным образом для данных с большим количеством временных рядов, которые очень длинные?
Спасибо
Отредактировано после просмотра ответов
ok, в конце я реализовал эту функцию:
def buildLaggedFeatures(s,lag=2,dropna=True):
'''
Builds a new DataFrame to facilitate regressing over all possible lagged features
'''
if type(s) is pd.DataFrame:
new_dict={}
for col_name in s:
new_dict[col_name]=s[col_name]
# create lagged Series
for l in range(1,lag+1):
new_dict['%s_lag%d' %(col_name,l)]=s[col_name].shift(l)
res=pd.DataFrame(new_dict,index=s.index)
elif type(s) is pd.Series:
the_range=range(lag+1)
res=pd.concat([s.shift(i) for i in the_range],axis=1)
res.columns=['lag_%d' %i for i in the_range]
else:
print 'Only works for DataFrame or Series'
return None
if dropna:
return res.dropna()
else:
return res
он производит желаемые выходы и управляет присвоением имен столбцам в результирующем DataFrame.
Для серии в качестве входного сигнала:
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
res=buildLaggedFeatures(s,lag=2,dropna=False)
lag_0 lag_1 lag_2
1 5 NaN NaN
2 4 5 NaN
3 3 4 5
4 2 3 4
5 1 2 3
и для ввода DataFrame:
s2=s=pd.DataFrame({'a':[5,4,3,2,1], 'b':[50,40,30,20,10]},index=[1,2,3,4,5])
res2=buildLaggedFeatures(s2,lag=2,dropna=True)
a a_lag1 a_lag2 b b_lag1 b_lag2
3 3 4 5 30 40 50
4 2 3 4 20 30 40
5 1 2 3 10 20 30
Ответы
Ответ 1
Как уже упоминалось, стоит обратить внимание на функции roll_, что означает, что у вас не будет столько копий.
Одним из решений является concat смещение Серия, чтобы сделать DataFrame:
In [11]: pd.concat([s, s.shift(), s.shift(2)], axis=1)
Out[11]:
0 1 2
1 5 NaN NaN
2 4 5 NaN
3 3 4 5
4 2 3 4
5 1 2 3
In [12]: pd.concat([s, s.shift(), s.shift(2)], axis=1).dropna()
Out[12]:
0 1 2
3 3 4 5
4 2 3 4
5 1 2 3
Выполнение работы над этим будет более эффективным, чем в списках...
Ответ 2
Очень простое решение с использованием pandas DataFrame:
number_lags = 3
df = pd.DataFrame(data={'vals':[5,4,3,2,1]})
for lag in xrange(1, number_lags + 1):
df['lag_' + str(lag)] = df.vals.shift(lag)
#if you want numpy arrays with no null values:
df.dropna().values for numpy arrays
Ответ 3
Вы можете выполнить следующие действия:
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
res = pd.DataFrame(index = s.index)
for l in range(3):
res[l] = s.shift(l)
print res.ix[3:,:].as_matrix()
Он производит:
array([[ 3., 4., 5.],
[ 2., 3., 4.],
[ 1., 2., 3.]])
который, я надеюсь, очень близок к тому, что вы действительно хотите.
Ответ 4
Мне нравится помещать числа запаздывания в столбцы, создавая столбцы a MultiIndex
. Таким образом, имена столбцов сохраняются.
Вот пример результата:
# Setup
indx = pd.Index([1, 2, 3, 4, 5], name='time')
s=pd.Series(
[5, 4, 3, 2, 1],
index=indx,
name='population')
shift_timeseries_by_lags(pd.DataFrame(s), [0, 1, 2])
Результат: MultiIndex DataFrame с двумя ярлыками столбцов: оригинальная ( "совокупность" ) и новая ( "отставание" ):
![dataframe с лагами 0, 1 и 2]()
Решение. Как и в принятом решении, мы используем DataFrame.shift
, а затем pandas.concat
.
def shift_timeseries_by_lags(df, lags, lag_label='lag'):
return pd.concat([
shift_timeseries_and_create_multiindex_column(df, lag,
lag_label=lag_label)
for lag in lags], axis=1)
def shift_timeseries_and_create_multiindex_column(
dataframe, lag, lag_label='lag'):
return (dataframe.shift(lag)
.pipe(append_level_to_columns_of_dataframe,
lag, lag_label))
Я хочу, чтобы был простой способ добавить список меток к существующим столбцам. Здесь мое решение.
def append_level_to_columns_of_dataframe(
dataframe, new_level, name_of_new_level, inplace=False):
"""Given a (possibly MultiIndex) DataFrame, append labels to the column
labels and assign this new level a name.
Parameters
----------
dataframe : a pandas DataFrame with an Index or MultiIndex columns
new_level : scalar, or arraylike of length equal to the number of columns
in `dataframe`
The labels to put on the columns. If scalar, it is broadcast into a
list of length equal to the number of columns in `dataframe`.
name_of_new_level : str
The label to give the new level.
inplace : bool, optional, default: False
Whether to modify `dataframe` in place or to return a copy
that is modified.
Returns
-------
dataframe_with_new_columns : pandas DataFrame with MultiIndex columns
The original `dataframe` with new columns that have the given `level`
appended to each column label.
"""
old_columns = dataframe.columns
if not hasattr(new_level, '__len__') or isinstance(new_level, str):
new_level = [new_level] * dataframe.shape[1]
if isinstance(dataframe.columns, pd.MultiIndex):
new_columns = pd.MultiIndex.from_arrays(
old_columns.levels + [new_level],
names=(old_columns.names + [name_of_new_level]))
elif isinstance(dataframe.columns, pd.Index):
new_columns = pd.MultiIndex.from_arrays(
[old_columns] + [new_level],
names=([old_columns.name] + [name_of_new_level]))
if inplace:
dataframe.columns = new_columns
return dataframe
else:
copy_dataframe = dataframe.copy()
copy_dataframe.columns = new_columns
return copy_dataframe
Обновить: я узнал из это решение другим способом поместить новый уровень в столбец, что делает ненужным использование append_level_to_columns_of_dataframe
:
def shift_timeseries_by_lags_v2(df, lags, lag_label='lag'):
return pd.concat({
'{lag_label}_{lag_number}'.format(lag_label=lag_label, lag_number=lag):
df.shift(lag)
for lag in lags},
axis=1)
Здесь результат shift_timeseries_by_lags_v2(pd.DataFrame(s), [0, 1, 2])
:
![результат <code> shift_timeseries_by_lags_2 </code>]()
Ответ 5
Для фрейма данных df с задержкой, применяемой к 'col name', вы можете использовать функцию сдвига.
df['lag1']=df['col name'].shift(1)
df['lag2']=df['col name'].shift(2)
Ответ 6
Для нескольких (многие из них) задержек это может быть более компактным:
df=pd.DataFrame({'year': range(2000, 2010), 'gdp': [234, 253, 256, 267, 272, 273, 271, 275, 280, 282]})
df.join(pd.DataFrame({'gdp_' + str(lag): df['gdp'].shift(lag) for lag in range(1,4)}))