Алгоритм обучения перцептрону не сходится к 0
Вот моя реализация персептрона в ANSI C:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float randomFloat()
{
srand(time(NULL));
float r = (float)rand() / (float)RAND_MAX;
return r;
}
int calculateOutput(float weights[], float x, float y)
{
float sum = x * weights[0] + y * weights[1];
return (sum >= 0) ? 1 : -1;
}
int main(int argc, char *argv[])
{
// X, Y coordinates of the training set.
float x[208], y[208];
// Training set outputs.
int outputs[208];
int i = 0; // iterator
FILE *fp;
if ((fp = fopen("test1.txt", "r")) == NULL)
{
printf("Cannot open file.\n");
}
else
{
while (fscanf(fp, "%f %f %d", &x[i], &y[i], &outputs[i]) != EOF)
{
if (outputs[i] == 0)
{
outputs[i] = -1;
}
printf("%f %f %d\n", x[i], y[i], outputs[i]);
i++;
}
}
system("PAUSE");
int patternCount = sizeof(x) / sizeof(int);
float weights[2];
weights[0] = randomFloat();
weights[1] = randomFloat();
float learningRate = 0.1;
int iteration = 0;
float globalError;
do {
globalError = 0;
int p = 0; // iterator
for (p = 0; p < patternCount; p++)
{
// Calculate output.
int output = calculateOutput(weights, x[p], y[p]);
// Calculate error.
float localError = outputs[p] - output;
if (localError != 0)
{
// Update weights.
for (i = 0; i < 2; i++)
{
float add = learningRate * localError;
if (i == 0)
{
add *= x[p];
}
else if (i == 1)
{
add *= y[p];
}
weights[i] += add;
}
}
// Convert error to absolute value.
globalError += fabs(localError);
printf("Iteration %d Error %.2f %.2f\n", iteration, globalError, localError);
iteration++;
}
system("PAUSE");
} while (globalError != 0);
system("PAUSE");
return 0;
}
Учебный набор, который я использую: Набор данных
Я удалил все нерелевантные коды. В основном, что он делает, теперь он читает файл test1.txt
и загружает значения из него в три массива: x
, y
, outputs
.
Тогда существует алгоритм обучения персептрона, который по какой-то причине не сходится к 0 (globalError
должен сходиться к 0) и поэтому я получаю бесконечный цикл while.
Когда я использую меньший набор тренировок (например, 5 баллов), он работает очень хорошо. Любые идеи, которые могут быть проблемой?
Я написал этот алгоритм, очень похожий на этот С# Perceptron algorithm:
EDIT:
Вот пример с меньшим набором тренировок:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float randomFloat()
{
float r = (float)rand() / (float)RAND_MAX;
return r;
}
int calculateOutput(float weights[], float x, float y)
{
float sum = x * weights[0] + y * weights[1];
return (sum >= 0) ? 1 : -1;
}
int main(int argc, char *argv[])
{
srand(time(NULL));
// X coordinates of the training set.
float x[] = { -3.2, 1.1, 2.7, -1 };
// Y coordinates of the training set.
float y[] = { 1.5, 3.3, 5.12, 2.1 };
// The training set outputs.
int outputs[] = { 1, -1, -1, 1 };
int i = 0; // iterator
FILE *fp;
system("PAUSE");
int patternCount = sizeof(x) / sizeof(int);
float weights[2];
weights[0] = randomFloat();
weights[1] = randomFloat();
float learningRate = 0.1;
int iteration = 0;
float globalError;
do {
globalError = 0;
int p = 0; // iterator
for (p = 0; p < patternCount; p++)
{
// Calculate output.
int output = calculateOutput(weights, x[p], y[p]);
// Calculate error.
float localError = outputs[p] - output;
if (localError != 0)
{
// Update weights.
for (i = 0; i < 2; i++)
{
float add = learningRate * localError;
if (i == 0)
{
add *= x[p];
}
else if (i == 1)
{
add *= y[p];
}
weights[i] += add;
}
}
// Convert error to absolute value.
globalError += fabs(localError);
printf("Iteration %d Error %.2f\n", iteration, globalError);
}
iteration++;
} while (globalError != 0);
// Display network generalisation.
printf("X Y Output\n");
float j, k;
for (j = -1; j <= 1; j += .5)
{
for (j = -1; j <= 1; j += .5)
{
// Calculate output.
int output = calculateOutput(weights, j, k);
printf("%.2f %.2f %s\n", j, k, (output == 1) ? "Blue" : "Red");
}
}
// Display modified weights.
printf("Modified weights: %.2f %.2f\n", weights[0], weights[1]);
system("PAUSE");
return 0;
}
Ответы
Ответ 1
В вашем текущем коде perceptron успешно изучает направление границы решения BUT не может перевести его.
y y
^ ^
| - + \\ + | - \\ + +
| - +\\ + + | - \\ + + +
| - - \\ + | - - \\ +
| - - + \\ + | - - \\ + +
---------------------> x --------------------> x
stuck like this need to get like this
(как кто-то указал, вот более точная версия)
Проблема заключается в том, что ваш персептрон не имеет члена смещения, т.е. третьего весового компонента, подключенного к входу значения 1.
w0 -----
x ---->| |
| f |----> output (+1/-1)
y ---->| |
w1 -----
^ w2
1(bias) ---|
Ниже приводится информация о том, как я исправил проблему:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define LEARNING_RATE 0.1
#define MAX_ITERATION 100
float randomFloat()
{
return (float)rand() / (float)RAND_MAX;
}
int calculateOutput(float weights[], float x, float y)
{
float sum = x * weights[0] + y * weights[1] + weights[2];
return (sum >= 0) ? 1 : -1;
}
int main(int argc, char *argv[])
{
srand(time(NULL));
float x[208], y[208], weights[3], localError, globalError;
int outputs[208], patternCount, i, p, iteration, output;
FILE *fp;
if ((fp = fopen("test1.txt", "r")) == NULL) {
printf("Cannot open file.\n");
exit(1);
}
i = 0;
while (fscanf(fp, "%f %f %d", &x[i], &y[i], &outputs[i]) != EOF) {
if (outputs[i] == 0) {
outputs[i] = -1;
}
i++;
}
patternCount = i;
weights[0] = randomFloat();
weights[1] = randomFloat();
weights[2] = randomFloat();
iteration = 0;
do {
iteration++;
globalError = 0;
for (p = 0; p < patternCount; p++) {
output = calculateOutput(weights, x[p], y[p]);
localError = outputs[p] - output;
weights[0] += LEARNING_RATE * localError * x[p];
weights[1] += LEARNING_RATE * localError * y[p];
weights[2] += LEARNING_RATE * localError;
globalError += (localError*localError);
}
/* Root Mean Squared Error */
printf("Iteration %d : RMSE = %.4f\n",
iteration, sqrt(globalError/patternCount));
} while (globalError > 0 && iteration <= MAX_ITERATION);
printf("\nDecision boundary (line) equation: %.2f*x + %.2f*y + %.2f = 0\n",
weights[0], weights[1], weights[2]);
return 0;
}
... со следующим выходом:
Iteration 1 : RMSE = 0.7206
Iteration 2 : RMSE = 0.5189
Iteration 3 : RMSE = 0.4804
Iteration 4 : RMSE = 0.4804
Iteration 5 : RMSE = 0.3101
Iteration 6 : RMSE = 0.4160
Iteration 7 : RMSE = 0.4599
Iteration 8 : RMSE = 0.3922
Iteration 9 : RMSE = 0.0000
Decision boundary (line) equation: -2.37*x + -2.51*y + -7.55 = 0
И здесь короткая анимация кода выше, использующего MATLAB, показывая границу решения на каждой итерации:
![screenshot]()
Ответ 2
Это может помочь, если вы поместили семена случайного генератора в начале main, вместо того, чтобы пересаживаться при каждом вызове randomFloat
, т.е.
float randomFloat()
{
float r = (float)rand() / (float)RAND_MAX;
return r;
}
// ...
int main(int argc, char *argv[])
{
srand(time(NULL));
// X, Y coordinates of the training set.
float x[208], y[208];
Ответ 3
Некоторые небольшие ошибки, которые я обнаружил в вашем исходном коде:
int patternCount = sizeof(x) / sizeof(int);
Лучше измените это на
int patternCount = i;
поэтому вам не нужно полагаться на свой массив x, чтобы иметь нужный размер.
Вы увеличиваете итерации внутри цикла p, тогда как исходный код С# делает это за пределами цикла p. Лучше переместите printf и итерацию ++ за пределы цикла p перед оператором PAUSE - также я удалю оператор PAUSE или измените его на
if ((iteration % 25) == 0) system("PAUSE");
Даже выполняя все эти изменения, ваша программа по-прежнему не завершает работу с вашим набором данных, но результат более согласован, давая ошибку, колеблющуюся где-то между 56 и 60.
Последнее, что вы могли бы попробовать, - проверить исходную программу С# на этом наборе данных, если она также не завершится, что-то не так с алгоритмом (потому что ваш набор данных выглядит правильно, см. мой комментарий к визуализации).
Ответ 4
globalError
не станет нулевым, он будет сходиться к нулю, как вы сказали, т.е. станет очень маленьким.
Измените свой цикл следующим образом:
int maxIterations = 1000000; //stop after one million iterations regardless
float maxError = 0.001; //one in thousand points in wrong class
do {
//loop stuff here
//convert to fractional error
globalError = globalError/((float)patternCount);
} while ((globalError > maxError) && (i<maxIterations));
Дайте значения maxIterations
и maxError
, применимые к вашей проблеме.