Почему 2 * (i * i) быстрее, чем 2 * я * я в Java?
Следующая Java-программа работает в среднем от 0,50 до 0,55 с:
public static void main(String[] args) {
long startTime = System.nanoTime();
int n = 0;
for (int i = 0; i < 1000000000; i++) {
n += 2 * (i * i);
}
System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s");
System.out.println("n = " + n);
}
Если я заменю 2 * (i * i)
на 2 * i * i
, запуск займет от 0,60 до 0,65 секунды. Как получилось?
Я запускал каждую версию программы 15 раз, чередуя их. Вот результаты:
2*(i*i) | 2*i*i
----------+----------
0.5183738 | 0.6246434
0.5298337 | 0.6049722
0.5308647 | 0.6603363
0.5133458 | 0.6243328
0.5003011 | 0.6541802
0.5366181 | 0.6312638
0.515149 | 0.6241105
0.5237389 | 0.627815
0.5249942 | 0.6114252
0.5641624 | 0.6781033
0.538412 | 0.6393969
0.5466744 | 0.6608845
0.531159 | 0.6201077
0.5048032 | 0.6511559
0.5232789 | 0.6544526
Самый быстрый запуск 2 * i * i
занял больше времени, чем самый медленный запуск 2 * (i * i)
. Если бы они оба были столь же эффективны, вероятность этого была бы менее 1/2 ^ 15 * 100% = 0,00305%.
Ответы
Ответ 1
Существует небольшая разница в упорядочении байт-кода.
2 * (i * i)
:
iconst_2
iload0
iload0
imul
imul
iadd
vs 2 * я * i
:
iconst_2
iload0
imul
iload0
imul
iadd
На первый взгляд это не должно иметь значения; если что-то вторая версия более оптимальна, так как она использует один слот меньше.
Поэтому нам нужно углубиться в нижний уровень (JIT) 1.
Помните, что JIT имеет тенденцию очень интенсивно разворачивать маленькие циклы. Действительно, мы наблюдаем 16-кратное разворачивание для случая 2 * (i * i)
:
030 B2: # B2 B3 <- B1 B2 Loop: B2-B2 inner main of N18 Freq: 1e+006
030 addl R11, RBP # int
033 movl RBP, R13 # spill
036 addl RBP, #14 # int
039 imull RBP, RBP # int
03c movl R9, R13 # spill
03f addl R9, #13 # int
043 imull R9, R9 # int
047 sall RBP, #1
049 sall R9, #1
04c movl R8, R13 # spill
04f addl R8, #15 # int
053 movl R10, R8 # spill
056 movdl XMM1, R8 # spill
05b imull R10, R8 # int
05f movl R8, R13 # spill
062 addl R8, #12 # int
066 imull R8, R8 # int
06a sall R10, #1
06d movl [rsp + #32], R10 # spill
072 sall R8, #1
075 movl RBX, R13 # spill
078 addl RBX, #11 # int
07b imull RBX, RBX # int
07e movl RCX, R13 # spill
081 addl RCX, #10 # int
084 imull RCX, RCX # int
087 sall RBX, #1
089 sall RCX, #1
08b movl RDX, R13 # spill
08e addl RDX, #8 # int
091 imull RDX, RDX # int
094 movl RDI, R13 # spill
097 addl RDI, #7 # int
09a imull RDI, RDI # int
09d sall RDX, #1
09f sall RDI, #1
0a1 movl RAX, R13 # spill
0a4 addl RAX, #6 # int
0a7 imull RAX, RAX # int
0aa movl RSI, R13 # spill
0ad addl RSI, #4 # int
0b0 imull RSI, RSI # int
0b3 sall RAX, #1
0b5 sall RSI, #1
0b7 movl R10, R13 # spill
0ba addl R10, #2 # int
0be imull R10, R10 # int
0c2 movl R14, R13 # spill
0c5 incl R14 # int
0c8 imull R14, R14 # int
0cc sall R10, #1
0cf sall R14, #1
0d2 addl R14, R11 # int
0d5 addl R14, R10 # int
0d8 movl R10, R13 # spill
0db addl R10, #3 # int
0df imull R10, R10 # int
0e3 movl R11, R13 # spill
0e6 addl R11, #5 # int
0ea imull R11, R11 # int
0ee sall R10, #1
0f1 addl R10, R14 # int
0f4 addl R10, RSI # int
0f7 sall R11, #1
0fa addl R11, R10 # int
0fd addl R11, RAX # int
100 addl R11, RDI # int
103 addl R11, RDX # int
106 movl R10, R13 # spill
109 addl R10, #9 # int
10d imull R10, R10 # int
111 sall R10, #1
114 addl R10, R11 # int
117 addl R10, RCX # int
11a addl R10, RBX # int
11d addl R10, R8 # int
120 addl R9, R10 # int
123 addl RBP, R9 # int
126 addl RBP, [RSP + #32 (32-bit)] # int
12a addl R13, #16 # int
12e movl R11, R13 # spill
131 imull R11, R13 # int
135 sall R11, #1
138 cmpl R13, #999999985
13f jl B2 # loop end P=1.000000 C=6554623.000000
Мы видим, что в стек есть один регистр, который "пролился".
И для версии 2 * я * i
:
05a B3: # B2 B4 <- B1 B2 Loop: B3-B2 inner main of N18 Freq: 1e+006
05a addl RBX, R11 # int
05d movl [rsp + #32], RBX # spill
061 movl R11, R8 # spill
064 addl R11, #15 # int
068 movl [rsp + #36], R11 # spill
06d movl R11, R8 # spill
070 addl R11, #14 # int
074 movl R10, R9 # spill
077 addl R10, #16 # int
07b movdl XMM2, R10 # spill
080 movl RCX, R9 # spill
083 addl RCX, #14 # int
086 movdl XMM1, RCX # spill
08a movl R10, R9 # spill
08d addl R10, #12 # int
091 movdl XMM4, R10 # spill
096 movl RCX, R9 # spill
099 addl RCX, #10 # int
09c movdl XMM6, RCX # spill
0a0 movl RBX, R9 # spill
0a3 addl RBX, #8 # int
0a6 movl RCX, R9 # spill
0a9 addl RCX, #6 # int
0ac movl RDX, R9 # spill
0af addl RDX, #4 # int
0b2 addl R9, #2 # int
0b6 movl R10, R14 # spill
0b9 addl R10, #22 # int
0bd movdl XMM3, R10 # spill
0c2 movl RDI, R14 # spill
0c5 addl RDI, #20 # int
0c8 movl RAX, R14 # spill
0cb addl RAX, #32 # int
0ce movl RSI, R14 # spill
0d1 addl RSI, #18 # int
0d4 movl R13, R14 # spill
0d7 addl R13, #24 # int
0db movl R10, R14 # spill
0de addl R10, #26 # int
0e2 movl [rsp + #40], R10 # spill
0e7 movl RBP, R14 # spill
0ea addl RBP, #28 # int
0ed imull RBP, R11 # int
0f1 addl R14, #30 # int
0f5 imull R14, [RSP + #36 (32-bit)] # int
0fb movl R10, R8 # spill
0fe addl R10, #11 # int
102 movdl R11, XMM3 # spill
107 imull R11, R10 # int
10b movl [rsp + #44], R11 # spill
110 movl R10, R8 # spill
113 addl R10, #10 # int
117 imull RDI, R10 # int
11b movl R11, R8 # spill
11e addl R11, #8 # int
122 movdl R10, XMM2 # spill
127 imull R10, R11 # int
12b movl [rsp + #48], R10 # spill
130 movl R10, R8 # spill
133 addl R10, #7 # int
137 movdl R11, XMM1 # spill
13c imull R11, R10 # int
140 movl [rsp + #52], R11 # spill
145 movl R11, R8 # spill
148 addl R11, #6 # int
14c movdl R10, XMM4 # spill
151 imull R10, R11 # int
155 movl [rsp + #56], R10 # spill
15a movl R10, R8 # spill
15d addl R10, #5 # int
161 movdl R11, XMM6 # spill
166 imull R11, R10 # int
16a movl [rsp + #60], R11 # spill
16f movl R11, R8 # spill
172 addl R11, #4 # int
176 imull RBX, R11 # int
17a movl R11, R8 # spill
17d addl R11, #3 # int
181 imull RCX, R11 # int
185 movl R10, R8 # spill
188 addl R10, #2 # int
18c imull RDX, R10 # int
190 movl R11, R8 # spill
193 incl R11 # int
196 imull R9, R11 # int
19a addl R9, [RSP + #32 (32-bit)] # int
19f addl R9, RDX # int
1a2 addl R9, RCX # int
1a5 addl R9, RBX # int
1a8 addl R9, [RSP + #60 (32-bit)] # int
1ad addl R9, [RSP + #56 (32-bit)] # int
1b2 addl R9, [RSP + #52 (32-bit)] # int
1b7 addl R9, [RSP + #48 (32-bit)] # int
1bc movl R10, R8 # spill
1bf addl R10, #9 # int
1c3 imull R10, RSI # int
1c7 addl R10, R9 # int
1ca addl R10, RDI # int
1cd addl R10, [RSP + #44 (32-bit)] # int
1d2 movl R11, R8 # spill
1d5 addl R11, #12 # int
1d9 imull R13, R11 # int
1dd addl R13, R10 # int
1e0 movl R10, R8 # spill
1e3 addl R10, #13 # int
1e7 imull R10, [RSP + #40 (32-bit)] # int
1ed addl R10, R13 # int
1f0 addl RBP, R10 # int
1f3 addl R14, RBP # int
1f6 movl R10, R8 # spill
1f9 addl R10, #16 # int
1fd cmpl R10, #999999985
204 jl B2 # loop end P=1.000000 C=7419903.000000
Здесь мы наблюдаем гораздо больше "проливания" и большего доступа к стеку [RSP +...]
из-за более промежуточных результатов, которые необходимо сохранить.
Таким образом, ответ на вопрос прост: 2 * (i * i)
быстрее, чем 2 * я * i
потому что JIT генерирует более оптимальный ассемблерный код для первого случая.
Но, конечно, очевидно, что ни первая, ни вторая версия не являются хорошими; цикл может действительно выиграть от векторизации, поскольку любой процессор x86-64 имеет как минимум поддержку SSE2.
Так что это проблема оптимизатора; как это часто бывает, он разворачивается слишком агрессивно и стреляет в ногу, все время упуская из виду другие возможности.
Фактически, современные процессоры x86-64 разбивают инструкции дальше на микрооперации (μops) и с такими функциями, как переименование регистров, μop-кэши и буферы контуров, оптимизация циклов требует гораздо большей аккуратности, чем простое развертывание для оптимальной производительности. Согласно руководству по оптимизации Agner Fog:
Увеличение производительности из-за кэша μop может быть довольно значительным, если средняя длина инструкции составляет более 4 байтов. Можно рассмотреть следующие методы оптимизации использования кэша μop:
- Убедитесь, что критические циклы достаточно малы, чтобы вписаться в кэш-память.
- Выровняйте самые критические записи цикла и записи функций на 32.
- Избегайте излишней развертки цикла.
- Избегайте инструкций с дополнительным временем загрузки
, , ,
Что касается времени загрузки - даже самый быстрый L1D-хит стоит 4 цикла, дополнительный регистр и μop, так что да, даже несколько обращений к памяти могут повредить производительность в жестких циклах.
Но вернемся к возможности векторизации - чтобы увидеть, насколько быстро это возможно, мы можем скомпилировать аналогичное приложение C с GCC, которое прямо его векторизует (показан AVX2, SSE2 похож) 2:
vmovdqa ymm0, YMMWORD PTR .LC0[rip]
vmovdqa ymm3, YMMWORD PTR .LC1[rip]
xor eax, eax
vpxor xmm2, xmm2, xmm2
.L2:
vpmulld ymm1, ymm0, ymm0
inc eax
vpaddd ymm0, ymm0, ymm3
vpslld ymm1, ymm1, 1
vpaddd ymm2, ymm2, ymm1
cmp eax, 125000000 ; 8 calculations per iteration
jne .L2
vmovdqa xmm0, xmm2
vextracti128 xmm2, ymm2, 1
vpaddd xmm2, xmm0, xmm2
vpsrldq xmm0, xmm2, 8
vpaddd xmm0, xmm2, xmm0
vpsrldq xmm1, xmm0, 4
vpaddd xmm0, xmm0, xmm1
vmovd eax, xmm0
vzeroupper
С временем выполнения:
- SSE: 0,24 с, или в 2 раза быстрее.
- AVX: 0,15 с или в 3 раза быстрее.
- AVX2: 0,08 с, или в 5 раз быстрее.
1Чтобы получить JIT-сборку сборки, получите отладочную JVM и запустите с помощью -XX:+PrintOptoAssembly
2Версия C скомпилирована с флагом -fwrapv
, который позволяет GCC обрабатывать целочисленное переполнение со знаком целого в качестве обертки с двумя дополнениями.
Ответ 2
Когда умножение равно 2 * (i * i)
, JVM может разложить умножение на 2
из цикла, в результате чего этот эквивалентный, но более эффективный код:
int n = 0;
for (int i = 0; i < 1000000000; i++) {
n += i * i;
}
n *= 2;
но когда умножение (2 * i) * i
, JVM не оптимизирует его, так как умножение на константу уже не является правильным перед добавлением.
Вот несколько причин, почему я так думаю:
- Добавление инструкции
if (n == 0) n = 1
в начале цикла приводит к тому, что обе версии являются эффективными, поскольку размножение умножения больше не гарантирует, что результат будет таким же - Оптимизированная версия (путем умножения умножения на 2) выполняется точно так же, как версия
2 * (i * i)
Вот тестовый код, который я использовал для вывода этих выводов:
public static void main(String[] args) {
long fastVersion = 0;
long slowVersion = 0;
long optimizedVersion = 0;
long modifiedFastVersion = 0;
long modifiedSlowVersion = 0;
for (int i = 0; i < 10; i++) {
fastVersion += fastVersion();
slowVersion += slowVersion();
optimizedVersion += optimizedVersion();
modifiedFastVersion += modifiedFastVersion();
modifiedSlowVersion += modifiedSlowVersion();
}
System.out.println("Fast version: " + (double) fastVersion / 1000000000 + " s");
System.out.println("Slow version: " + (double) slowVersion / 1000000000 + " s");
System.out.println("Optimized version: " + (double) optimizedVersion / 1000000000 + " s");
System.out.println("Modified fast version: " + (double) modifiedFastVersion / 1000000000 + " s");
System.out.println("Modified slow version: " + (double) modifiedSlowVersion / 1000000000 + " s");
}
private static long fastVersion() {
long startTime = System.nanoTime();
int n = 0;
for (int i = 0; i < 1000000000; i++) {
n += 2 * (i * i);
}
return System.nanoTime() - startTime;
}
private static long slowVersion() {
long startTime = System.nanoTime();
int n = 0;
for (int i = 0; i < 1000000000; i++) {
n += 2 * i * i;
}
return System.nanoTime() - startTime;
}
private static long optimizedVersion() {
long startTime = System.nanoTime();
int n = 0;
for (int i = 0; i < 1000000000; i++) {
n += i * i;
}
n *= 2;
return System.nanoTime() - startTime;
}
private static long modifiedFastVersion() {
long startTime = System.nanoTime();
int n = 0;
for (int i = 0; i < 1000000000; i++) {
if (n == 0) n = 1;
n += 2 * (i * i);
}
return System.nanoTime() - startTime;
}
private static long modifiedSlowVersion() {
long startTime = System.nanoTime();
int n = 0;
for (int i = 0; i < 1000000000; i++) {
if (n == 0) n = 1;
n += 2 * i * i;
}
return System.nanoTime() - startTime;
}
И вот результаты:
Fast version: 5.7274411 s
Slow version: 7.6190804 s
Optimized version: 5.1348007 s
Modified fast version: 7.1492705 s
Modified slow version: 7.2952668 s
Ответ 3
Байт-коды: https://cs.nyu.edu/courses/fall00/V22.0201-001/jvm2.html
Просмотр байтовых кодов: https://github.com/Konloch/bytecode-viewer
На моем JDK (Windows 10 64 бит, 1.8.0_65-b17) я могу воспроизвести и объяснить:
public static void main(String[] args) {
int repeat = 10;
long A = 0;
long B = 0;
for (int i = 0; i < repeat; i++) {
A += test();
B += testB();
}
System.out.println(A / repeat + " ms");
System.out.println(B / repeat + " ms");
}
private static long test() {
int n = 0;
for (int i = 0; i < 1000; i++) {
n += multi(i);
}
long startTime = System.currentTimeMillis();
for (int i = 0; i < 1000000000; i++) {
n += multi(i);
}
long ms = (System.currentTimeMillis() - startTime);
System.out.println(ms + " ms A " + n);
return ms;
}
private static long testB() {
int n = 0;
for (int i = 0; i < 1000; i++) {
n += multiB(i);
}
long startTime = System.currentTimeMillis();
for (int i = 0; i < 1000000000; i++) {
n += multiB(i);
}
long ms = (System.currentTimeMillis() - startTime);
System.out.println(ms + " ms B " + n);
return ms;
}
private static int multiB(int i) {
return 2 * (i * i);
}
private static int multi(int i) {
return 2 * i * i;
}
Выход:
...
405 ms A 785527736
327 ms B 785527736
404 ms A 785527736
329 ms B 785527736
404 ms A 785527736
328 ms B 785527736
404 ms A 785527736
328 ms B 785527736
410 ms
333 ms
Так почему?
Байт-код такой:
private static multiB(int arg0) { // 2 * (i * i)
<localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>
L1 {
iconst_2
iload0
iload0
imul
imul
ireturn
}
L2 {
}
}
private static multi(int arg0) { // 2 * i * i
<localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>
L1 {
iconst_2
iload0
imul
iload0
imul
ireturn
}
L2 {
}
}
Разница в том, что:
С скобками (2 * (i * i)
):
- push const stack
- вставьте локально в стек
- вставьте локально в стек
- умножить вершину стека
- умножить вершину стека
Без скобок (2 * i * i
):
- push const stack
- вставьте локально в стек
- умножить вершину стека
- вставьте локально в стек
- умножить вершину стека
Загрузка всего в стек и последующая работа обратно быстрее, чем переключение между помещением в стек и работой с ним.
Ответ 4
Касперд спросил в комментарии к принятому ответу:
Примеры Java и C используют совершенно разные имена регистров. Оба примера используют AMD64 ISA?
xor edx, edx
xor eax, eax
.L2:
mov ecx, edx
imul ecx, edx
add edx, 1
lea eax, [rax+rcx*2]
cmp edx, 1000000000
jne .L2
У меня недостаточно репутации, чтобы ответить на это в комментариях, но это те же самые ISA. Стоит отметить, что версия GCC использует 32-битную целочисленную логику, а скомпилированная версия JVM использует внутреннюю логику 64-битного целого.
R8-R15 являются только новыми x86_64 регистров. EAX to EDX - это нижние части регистров общего назначения RAX для RDX. Важная часть ответа заключается в том, что версия GCC не разворачивается. Он просто выполняет один цикл цикла для каждого цикла машинного кода. Хотя версия JVM имеет 16 циклов цикла в одном физическом цикле (на основе ответа rustyx я не переосмыслил сборку). Это одна из причин, по которой используется больше регистров, поскольку тело цикла на самом деле в 16 раз больше.
Ответ 5
Хотя это не было напрямую связано со средой вопросов, просто для любопытства я провел такой же тест на .NET Core 2.1, x64, режим выпуска.
Вот интересный результат, подтверждающий аналогичные фономены (наоборот), происходящие над темной стороной силы. Код:
static void Main(string[] args)
{
Stopwatch watch = new Stopwatch();
Console.WriteLine("2 * (i * i)");
for (int a = 0; a < 10; a++)
{
int n = 0;
watch.Restart();
for (int i = 0; i < 1000000000; i++)
{
n += 2 * (i * i);
}
watch.Stop();
Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds} ms");
}
Console.WriteLine();
Console.WriteLine("2 * i * i");
for (int a = 0; a < 10; a++)
{
int n = 0;
watch.Restart();
for (int i = 0; i < 1000000000; i++)
{
n += 2 * i * i;
}
watch.Stop();
Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds}ms");
}
}
Результат:
2 * (я * я)
- результат: 119860736, 438 мс
- результат: 119860736, 433 мс
- результат: 119860736, 437 мс
- результат: 119860736, 435 мс
- результат: 119860736, 436 мс
- результат: 119860736, 435 мс
- результат: 119860736, 435 мс
- результат: 119860736, 439 мс
- результат: 119860736, 436 мс
- результат: 119860736, 437 мс
2 * я * я
- результат: 119860736, 417 мс
- результат: 119860736, 417 мс
- результат: 119860736, 417 мс
- результат: 119860736, 418 мс
- результат: 119860736, 418 мс
- результат: 119860736, 417 мс
- результат: 119860736, 418 мс
- результат: 119860736, 416 мс
- результат: 119860736, 417 мс
- результат: 119860736, 418 мс
Ответ 6
Я получил аналогичные результаты:
2 * (i * i): 0.458765943 s, n=119860736
2 * i * i: 0.580255126 s, n=119860736
Я получил ИГРЫ, если обе циклы были в одной программе, или каждый из них был в отдельном файле.java/.class, выполненном в отдельном прогоне.
Наконец, вот javap -c -v <.java>
:
3: ldc #3 // String 2 * (i * i):
5: invokevirtual #4 // Method java/io/PrintStream.print:(Ljava/lang/String;)V
8: invokestatic #5 // Method java/lang/System.nanoTime:()J
8: invokestatic #5 // Method java/lang/System.nanoTime:()J
11: lstore_1
12: iconst_0
13: istore_3
14: iconst_0
15: istore 4
17: iload 4
19: ldc #6 // int 1000000000
21: if_icmpge 40
24: iload_3
25: iconst_2
26: iload 4
28: iload 4
30: imul
31: imul
32: iadd
33: istore_3
34: iinc 4, 1
37: goto 17
против
3: ldc #3 // String 2 * i * i:
5: invokevirtual #4 // Method java/io/PrintStream.print:(Ljava/lang/String;)V
8: invokestatic #5 // Method java/lang/System.nanoTime:()J
11: lstore_1
12: iconst_0
13: istore_3
14: iconst_0
15: istore 4
17: iload 4
19: ldc #6 // int 1000000000
21: if_icmpge 40
24: iload_3
25: iconst_2
26: iload 4
28: imul
29: iload 4
31: imul
32: iadd
33: istore_3
34: iinc 4, 1
37: goto 17
FYI -
java -version
java version "1.8.0_121"
Java(TM) SE Runtime Environment (build 1.8.0_121-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)
Ответ 7
Я попробовал JMH, используя архетип по умолчанию: я также добавил оптимизированную версию на основе объяснения Runemoro.
@State(Scope.Benchmark)
@Warmup(iterations = 2)
@Fork(1)
@Measurement(iterations = 10)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
//@BenchmarkMode({ Mode.All })
@BenchmarkMode(Mode.AverageTime)
public class MyBenchmark {
@Param({ "100", "1000", "1000000000" })
private int size;
@Benchmark
public int two_square_i() {
int n = 0;
for (int i = 0; i < size; i++) {
n += 2 * (i * i);
}
return n;
}
@Benchmark
public int square_i_two() {
int n = 0;
for (int i = 0; i < size; i++) {
n += i * i;
}
return 2*n;
}
@Benchmark
public int two_i_() {
int n = 0;
for (int i = 0; i < size; i++) {
n += 2 * i * i;
}
return n;
}
}
Результат здесь:
Benchmark (size) Mode Samples Score Score error Units
o.s.MyBenchmark.square_i_two 100 avgt 10 58,062 1,410 ns/op
o.s.MyBenchmark.square_i_two 1000 avgt 10 547,393 12,851 ns/op
o.s.MyBenchmark.square_i_two 1000000000 avgt 10 540343681,267 16795210,324 ns/op
o.s.MyBenchmark.two_i_ 100 avgt 10 87,491 2,004 ns/op
o.s.MyBenchmark.two_i_ 1000 avgt 10 1015,388 30,313 ns/op
o.s.MyBenchmark.two_i_ 1000000000 avgt 10 967100076,600 24929570,556 ns/op
o.s.MyBenchmark.two_square_i 100 avgt 10 70,715 2,107 ns/op
o.s.MyBenchmark.two_square_i 1000 avgt 10 686,977 24,613 ns/op
o.s.MyBenchmark.two_square_i 1000000000 avgt 10 652736811,450 27015580,488 ns/op
На моем ПК (Core i7 860 - он ничего не делает, кроме чтения на моем смартфоне):
n += i*i
затем n*2
сначала
2 * (i * i)
второй.
JVM явно не оптимизирует так же, как человек (основываясь на ответе Рунеморо).
Теперь, читая байт-код: javap -c -v ./target/classes/org/sample/MyBenchmark.class
Я не эксперт по байт-коду, но мы iload_2
до того, как мы imul
: это, вероятно, где вы получите разницу: я могу предположить, что JVM оптимизирует чтение i
дважды (i
уже здесь, и нет нужно загрузить его снова) пока в 2*i*i
это не может.
Ответ 8
Интересное наблюдение с использованием Java 11 и выключения размотки цикла с помощью следующей опции VM:
-XX:LoopUnrollLimit=0
Цикл с выражением 2 * (i * i)
приводит к более компактному собственному коду 1:
L0001: add eax,r11d
inc r8d
mov r11d,r8d
imul r11d,r8d
shl r11d,1h
cmp r8d,r10d
jl L0001
по сравнению с версией 2 * i * i
:
L0001: add eax,r11d
mov r11d,r8d
shl r11d,1h
add r11d,2h
inc r8d
imul r11d,r8d
cmp r8d,r10d
jl L0001
Java-версия:
java version "11" 2018-09-25
Java(TM) SE Runtime Environment 18.9 (build 11+28)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11+28, mixed mode)
Результаты тестов:
Benchmark (size) Mode Cnt Score Error Units
LoopTest.fast 1000000000 avgt 5 694,868 ± 36,470 ms/op
LoopTest.slow 1000000000 avgt 5 769,840 ± 135,006 ms/op
Исходный код теста:
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Warmup(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@State(Scope.Thread)
@Fork(1)
public class LoopTest {
@Param("1000000000") private int size;
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(LoopTest.class.getSimpleName())
.jvmArgs("-XX:LoopUnrollLimit=0")
.build();
new Runner(opt).run();
}
@Benchmark
public int slow() {
int n = 0;
for (int i = 0; i < size; i++)
n += 2 * i * i;
return n;
}
@Benchmark
public int fast() {
int n = 0;
for (int i = 0; i < size; i++)
n += 2 * (i * i);
return n;
}
}
1 - VM options used: [TG48]
Ответ 9
Больше из приложения. Я повторил эксперимент, используя последнюю версию Java 8 JVM от IBM:
java version "1.8.0_191"
Java(TM) 2 Runtime Environment, Standard Edition (IBM build 1.8.0_191-b12 26_Oct_2018_18_45 Mac OS X x64(SR5 FP25))
Java HotSpot(TM) 64-Bit Server VM (build 25.191-b12, mixed mode)
И это показывает очень похожие результаты:
0.374653912 s
n = 119860736
0.447778698 s
n = 119860736
(второй результат с использованием 2 * i * i).
Интересно, что при работе на той же машине, но с использованием Oracle Java:
Java version "1.8.0_181"
Java(TM) SE Runtime Environment (build 1.8.0_181-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)
результаты в среднем немного медленнее:
0.414331815 s
n = 119860736
0.491430656 s
n = 119860736
Короче говоря: здесь важен даже младший номер версии HotSpot, поскольку незначительные различия в реализации JIT могут иметь заметные последствия.
Ответ 10
Два метода добавления генерируют немного другой байт-код:
17: iconst_2
18: iload 4
20: iload 4
22: imul
23: imul
24: iadd
Для 2 * (i * i)
против:
17: iconst_2
18: iload 4
20: imul
21: iload 4
23: imul
24: iadd
Для 2 * я * i
.
И при использовании теста JMH, как это:
@Warmup(iterations = 5, batchSize = 1)
@Measurement(iterations = 5, batchSize = 1)
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Benchmark)
public class MyBenchmark {
@Benchmark
public int noBrackets() {
int n = 0;
for (int i = 0; i < 1000000000; i++) {
n += 2 * i * i;
}
return n;
}
@Benchmark
public int brackets() {
int n = 0;
for (int i = 0; i < 1000000000; i++) {
n += 2 * (i * i);
}
return n;
}
}
Разница очевидна:
# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: <none>
Benchmark (n) Mode Cnt Score Error Units
MyBenchmark.brackets 1000000000 avgt 5 380.889 ± 58.011 ms/op
MyBenchmark.noBrackets 1000000000 avgt 5 512.464 ± 11.098 ms/op
То, что вы наблюдаете, является правильным, а не просто аномалией вашего стиля бенчмаркинга (т.е. Без разминки, см. Как написать правильный микро-бенчмарк в Java?)
Бегом снова с Граалем:
# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: -XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCI -XX:+UseJVMCICompiler
Benchmark (n) Mode Cnt Score Error Units
MyBenchmark.brackets 1000000000 avgt 5 335.100 ± 23.085 ms/op
MyBenchmark.noBrackets 1000000000 avgt 5 331.163 ± 50.670 ms/op
Вы видите, что результаты гораздо ближе, что имеет смысл, поскольку Graal - это более производительный, более современный компилятор.
Так что на самом деле это зависит только от того, насколько хорошо JIT-компилятор способен оптимизировать конкретный фрагмент кода и не обязательно имеет для этого логическую причину.
Ответ 11
Помните, что JIT имеет тенденцию очень интенсивно разворачивать маленькие циклы.
Это быстрее, потому что JIT генерирует более оптимальный ассемблерный код для первого случая.
Ответ 12
Если взять только два члена суммирования, то можно видеть, что -
в прежнем случае справедлив простой математический факт:
(3 multiplications)
но из-за правил приоритета оператора мы получаем в последнем случае:
(4 multiplications)